
Web Screens with Customer-facing Focus

Getting Started with Angular

So far, we have seen how to build screens focused on the back-office
of the application; that is, the part that the travel agency employees
use to enter and maintain the company's data. Now we will see how
to design and implement the screens that the agency's clients will use
to browse the information, which constitute the customer-facing part
of the application.

-facing application

Panel objects

The travel agency has requested a web screen for their clients that
shows the available tourist attractions and allows them to interact with
the information; for example, filtering the data on screen to refine a
search or to see the details of a selected attraction.

Previously we saw how to build screens with web panels, now we will
see how to implement them with the panel object, which will allow us
to generate the application in Angular.

Remember that we could use these same panel objects to generate the
screens of our mobile application, for Android or Apple devices.

2

Developing the application

https://wiki.genexus.com/commwiki/servlet/wiki?42541Prerequisites for Angular:

Grid’s Auto Grow property:
True

We will create the list of available attractions, so that we can then
click on one that interests us and see more information about that
attraction. The idea is to build a panel similar to the
WWAttractionsFromScratch web panel we saw earlier.

We create a FrontendAngular folder and create a Panel type object
named Attractions_CFPanel. As we can see, here we also have a
form where we can drag controls from the toolbar.
We start by dragging a Grid and selecting the AttractionId,
AttractionName, CountryName and AttractionPhoto attributes.
Then we set the Visible property of AttractionId to False, and in the
Base Trn property of the grid we assign the Attraction transaction.

Now we will assign Angular as a generator. In the KB Explorer we
click on Frontend and note that there is a property called Generate
Angular whose default value is False, so we set it to True. We also
see that Generate Android and Generate Apple are by default set
to True, but since we are not interested in generating for mobile
devices at the moment, we set them to False.

To be able to generate in Angular, we must install the software
mentioned in the wiki article, which is shown on screen.

3

Executing the application
The value fo the port may change and will be assigned
automatically

To run it, first we set the panel just created as Main, right-
click on it and select Run. We see that a command line window
opens showing the execution of the server and after a few minutes
the browser opens with the application running.

Obviously the design is quite poor, but we'll take care of that. The
application is running by default on the URL http://localhost:4200,
which is the address of the local development server where the
application was automatically installed.
We already have our first angular application running.

4

Navigation Lists

If we go to the navigation list of the Attractions_CFPanel panel
object we see that two entries are displayed. If we select the one
with the panel name, the list is empty and no reference to the
Attraction table is shown. This is in the node called
Level_Detail_Grid1, where we see that the information is similar to
what we would see with a web panel with Attraction base table,
since the panel's grid is running through the Attraction table to
show the tourist attractions.

The node in the list named Attractions_CFPanel corresponds to the
panel itself, and includes information on User Interface elements,
such as the navigation of the Dynamic combos. Since our panel

have any elements in the fixed part, the list appears empty.

The node called Level_Detail_Grid1 corresponds to the grid we
inserted. The Attraction base table is run as we expected, after
having inserted Attraction attributes in the grid. The title of the
report says that the navigation corresponds to the Data Provider
Attractions_CFPanel_Level_Detail_Grid1, which is the data provider
published as a service in the back-end and invoked by the panel to
access the database and retrieve the attractions.

Here is the evidence of what we saw before: that the architecture of
these customer-facing applications with Angular has logic at the
client level, and that services are invoked on the server to access
the information in the database.

5

We add the total trips of each attraction and overall total of trips

To make our panel more similar to the Working with Attractions web
panel seen before, we will add one more column to the grid with the
total trips of each attraction and outside the grid, the total trips of all
the attractions. We create the variables &Trips and &TotalTrips, add
&Trips to the grid by setting its Label position property to None, and
place &TotalTrips below the grid.

To get the number of trips for an attraction, you have to run through
the TripAttraction table. As this is related to the database, we have
to schedule an event to be triggered on the server. In the panel
objects we also have the Start, Refresh and Load events like in the
web panels.

We will schedule the events just like we did with the web panel
WWAttractionsFromScratch. In the Load event we use a Count
formula that uses the TripDate attribute to count the trip records. As
we saw before, although the TripDate attribute belongs to the Trip
table, GeneXus will not choose the Trip table as the base table of the
formula, but the TripAttraction table instead.
As we know that the grid runs through the Attraction table because
we saw it in the navigation list, the Load event will be triggered once
for each row of the grid, so the count formula will count the trips of
each attraction shown. Then we accumulate in &TotalTrips the total
of all trips.
The same clarification we saw before can be made: in this case we
use the general Load event because we have only one grid, but we
could have used the Grid1.Load event, which allows us to add
another grid to the panel in the future and not change the

6

programming.

Since we want the total trips to be initialized at zero before starting to count the trips of
the attractions, in the Refresh event we will add the initialization to the &TotalTrips
variable, in a similar way to what we had done in the web panel.

To run it again, we right-click on the panel and select Run.

Navigation Lists

Looking at the navigation list, we see that there is a new level of
detail different from the grid, called Level_Detail. This is where the
load of the fixed part of the panel is shown, i.e. all the controls of
the form that are not included in a grid.

Unlike web panels, in a panel object the fixed part is independent of
the grid and, as we will see later, the fixed part can even have a
different base table than the grid base table.

The navigation list of the Level_Detail node (which invokes the data
provider mentioned in the title) appears empty, because no field is
being loaded from the database, there is only the &TotalTrips
variable, which is updated within the Load event.

If we go to the navigation list of the Level_Detail_Grid1, we see that
the corresponding data provider is accessing the Attraction table,
ordered by AtractionId that is the default order, and there is also the
navigation of the Count formula since it is triggered in the Load
event.

7

The overall total of trips is miscalculated!

If we look at the application running in the browser, we see that
the total number of trips of each attraction is displayed correctly,
but the overall total of trips comes out at 0.
What did we do wrong? The &TotalTrips variable is being
increased in the Load event as we did in the web panel and we
are sure that this event is being triggered because we see that
some attractions have trips... So?

The reason is that panel objects do not work in the same way as
web panels. In panel objects, the fixed part is loaded
independently of the grid.
In this case, the &TotalTrips variable is in the fixed part of the
panel, which is the first thing to be loaded. Then the grid is
loaded, so when the variable is displayed, the grid has not been
loaded, the Load event has not been triggered, and the value of
&TotalTrips has not been added yet.

Remember that in a panel object used to develop customer-
facing applications, to load the screen in the client device,
services located in the server are invoked which are the ones that
access the database. These services are data providers, which
are independent for the fixed part and for the grid (or each grid)
of the screen.

When the panel starts running, a local event is triggered on the
client that invokes the data provider to load the fixed part and
causes the Start and Refresh events to be triggered on the server.
Then a second data provider is executed which triggers the Load
event on the server N times and the grid is loaded.

In our example, as the Refresh is triggered first, the &TotalTrips
8

variable is initialized and the fixed part is loaded; later, the Load event is triggered which
is where &TotalTrips is loaded with the correct value and the grid is updated, but the
fixed part was already loaded before and is not redrawn.

Due to this feature we cannot program the panel object as if it were a web panel.

In another video we will have a closer look at the triggering of events and the
determination of base tables; for now, to make the example work we will change the
programming.

Correct Solution

The solution is to include in the Refresh event a For Each
command that accesses the TripAttraction table and counts the
overall total of trips. Let's not forget to remove the calculation
we had in the Load event.

The reason why we include the update in the Refresh event,
using a For Each command, is because the Refresh event will be
triggered when the fixed part is loaded, which will be before the
grid is loaded.
Therefore when loading the fixed part, the value of &TotalTrips
will have the correct value and only after that the grid part will
be updated.

We run it.

Note that now the navigation list corresponding to the
Level_Detail node includes the For Each command with the
navigation to the TripAttraction table.

9

Running it with the right overall total of trips

In the browser we see that the overall total of trips is now displayed
correctly.

10

We add filters by country and name of attraction

To complete the Work With Attractions panel, we would need to
add the filters by the country identifier and by attraction names.

We add above the grid a &CountryId variable as Dynamic Combo
box, with the Item Descriptions property showing the
CountryName, and set the Empty Item property to True. We also
add the &AttactionNameFrom and &AttractionNameTo variables to
filter the attractions by name.

In a web panel we would add the filter in the grid conditions, and
here we can also do the same. Let's define a condition to filter by
country and others to filter from and to the name of the attraction.

11

We order the list of attractions by name

We also have an Order property, where we are going to set the
grid to be ordered by attraction name, so, we right-click on
Orders, give it a name for example, Name and then right-click
again to open the AttractionName attribute.

We can define an order by several attributes, as well as create
other orders by different criteria. The part where it reads Break By
allows us to group the grid records; for example, if we want the
attractions to be grouped by country name.

12

If we right-click on the panel and select View Navigation, in the
navigation list of the panel itself, we see that the Country table is
accessed to fill the Dynamic Combo box (where it says FILL
&CountryId WITH CountryId, CountryName IN).

The navigation list of the Level_Detail node shows the Data
Provider report (automatically created by GeneXus but not
displayed in the KB) that is invoked in the server to retrieve the
data from the database, which is necessary to load the fixed part
of the panel. This Data Provider triggers the Start and Refresh
events on the server.
In the list we see the For Each command that we programmed in
the Refresh event, and that accesses the TripAttraction table to
count the total of trips. Also, we see the access to the Country
table filtered by the CountryId selected in the Dynamic combo.

If we look at the navigation list corresponding to the Data Provider
that loads the grid, we see that now the attractions will be run
through in order by AttractionName and that the constraints show
the filters that we defined. This Data Provider executes the Load
event internally once for each line of the grid to be loaded as in
web panels, if the grid has a base table and returns the
information to the panel to be displayed.

13

Need to refresh the content with the filters

Fixed part

Grid

Something we mentioned was that the fixed part of the panel is loaded
independently from the loading of the grid. Different data providers are
invoked that are published in the server as services and access the
database to retrieve the information of each part.

When we change the value of a filter, the grid information needs to be
refreshed. For this, we need to add the grid's Refresh method, which
will trigger the server's Refresh and Load events. In turn, it will cause
the grid to be reloaded, applying the programmed conditions and
displaying the filtered results as expected.

Since the grid's Refresh method must be invoked after we change the
value of the filter variable, we use the ControlValueChanged event of
each variable to invoke the method. In this way, after changing a value,
when leaving the field the corresponding event will be triggered which
will end up refreshing the content of the grid.

However, there is something else we need to take into account which is
that in this architecture, since the objective is to have the page loaded
as few times as possible, the data cache is prioritized; that is to say, we
always try to retrieve the information previously saved. For the server to
understand that we want to bring new data, the URL sent to the server
must be changed, so that it understands that it is a new page and
obtains the corresponding information to send to the client.
To do so, we added a Parm rule containing the values of the variables
used in the filters. In this way, if a variable's value changes, the page is
updated with the new data.

Now we run it to test what we have seen.

14

Execution with the new filters and order

Note that at the top we now have the filters we added and the attractions
are sorted by name as we expected.

15

Execution with the new filters and order (continued)

We will filter by the country China and see that attractions will
be displayed.

Now we choose to see the attractions that begin with the letter A to the
letter N, and we only see the attractions in China whose name is in that
range.

16

We implement an attraction's detail

Attributes added to
meet new
requirements

Now let's complete the request, which is to show the details of
each listed attraction by clicking on them. For this we will use another
panel object named AttractionDetail_CFPanel. To save time, I have
already created it.

We see that in the rules we define a Parm rule, with an input parameter,
the AttractionId attribute.
Remember that this will allow showing only the information of the
attraction passed by parameter, which was the one we selected in the
panel of the attractions list.

In the form we added the attribute AtractionPhoto and the attributes
AtractionName, CityName, and CountryName. Below we inserted the
AttractionDescription attribute. Next, we inserted a grid and selected
the attributes AttractionsInfoName, AttractionInfoImage and
AttractionInfoDescription to see the attraction details. As we can see,
we have inserted some Table controls for better alignment.
We also added a BACK button at the top right corner that will invoke a
Return that will allow us to return to the list of attractions.

Now we go to the panel Attractions_CFPanel and add a &Detail variable
of Character type to the grid. In the Start event we assign the text

.
Next, we right-click on the grid variable and select Go to Event, Tap and
write the invocation to AttractionDetail_CFPanel, passing AttractionId as
a parameter.

try this at runtime,

17

Execution with an attraction's details

We will see the information of the Louvre museum, so in the corresponding
line we click on Details.

18

Execution with an attraction's details (continued)

The panel opens with the attraction's details, where we can see a
map and the available exhibitions.

19

Generating the app in native Android

https://wiki.genexus.com/commwiki/servlet/wiki?14449Prerequisites for Android :

At the beginning of this video we said that if we wanted to, we
could use the panel objects we built to generate the screens for our
mobile application. Let's try this out.

To be able to generate in Android language, you must install the
software mentioned in the wiki article, which is displayed on the
screen.

In the KB Explorer, we click on the Front end node and set the
Generate Android property to True and the Main Platform property
to Android.
Now we execute the main object Attractions_CFPanel.

We can see that the Android emulator opens showing the
Attractions_CFPanel panel, with the list of tourist attractions.
Obviously, we should define a layout according to the screen size
of a phone, since when we designed the panel we were thinking
about the screen of a web system that would run on the screen of a
desktop computer.

But beyond the design, let's check if it works properly. In the filter
we chose France and it shows only the attractions of France. Now
we click on the Details of the Louvre and see that the screen opens
with the details of the museum, showing the map and the exhibits

20

as we expected.

In this video, we started to get familiar with the panel objects, generating the application
in the Angular framework. We confirmed that with the same objects created we could
also generate the application in native Android language.

Next, we will learn more about the event management at client and server level.

training.genexus.com
wiki.genexus.com

