
………..……………………………………………………

For each in depth

Order and performance clauses

Let's focus on order clauses and how they relate to the optimization of queries.

1

………..……………………………………………………

We know that to order the information to be queried and returned, the syntax of
the For each allows us to specify a list of conditional clauses and an unconditional
one.

skip expression1 count expression2

order att1, att2, … , attn [when condition]

order att1, att2, … , attn [when condition]

order none [when condition]

unique att1, att2, … , attn

using DataSelector (parm1, parm2, … , parmn)

where condition [when condition]

where condition [when condition]

where att IN DataSelector (parm1, parm2, … , parmn)

blocking n

main_code

when duplicate

when_duplicate_code

when none

when_none_code

BaseTrn1 , … , BaseTrnnFor each

endfor

………..……………………………………………………

Let's go from what is simpler to what is more complex: let's start by analyzing the
case of a single order clause with no conditions, such as this one. We want to run
through the table of tourist attractions, filtering those corresponding a given
country and city, and to display them sorted by AttractionName, a secondary
attribute.

When specifying what we want, it shouldn't matter whether in order to get the
required data it should be first obtained and then sorted, or if it is done the other
way around, or in some other way. We, the developers, specify what we want and
the GeneXus specifier and, above all, the DBMS will solve it.

skip expression1 count expression2

order att1, att2, … , attn [when condition]

order att1, att2, … , attn [when condition]

order none [when condition]

unique att1, att2, … , attn

using DataSelector (parm1, parm2, … , parmn)

where condition [when condition]

where condition [when condition]

where att IN DataSelector (parm1, parm2, … , parmn)

blocking n

main_code

when duplicate

when_duplicate_code

when none

when_none_code

BaseTrn1 , … , BaseTrnnFor each

endfor

for each Attraction
order AttractionName
where CountryId = &countryId
where CityId = &cityId

print attractionInfo //AttractionName
endfor

………..……………………………………………………

When we ask GeneXus to specify and generate the program associated with the
object containing the For each, we do it for a given environment, that is, in a given
programming language, such as Net and for a database managed by a given DBMS,
such as SQL Server, for example. It could also be for a Java environment against
Oracle, or so many other alternatives.

When a developer writes a For each, they do it in GeneXus, with a certain
independence from what the final environment will be, in order to obtain the
application in different environments with the same code.

This means that the specific implementation is handled by GeneXus, which is
aware of the specific features of each environment. However, its knowledge has a
limit: it knows the database structure, but not the data, nor its distribution,
quantity, etcetera. This information is held by the DBMS, which records statistics,
and caches data and queries in the history of the queries that have been made,
builds execution plans, maintains indexes, and so on. The more evolved and
intelligent the DBMS is, the less it will need GeneXus to tell it precisely how to
perform the query, because GeneXus will never know more than it does.

So, for example, if we ask to specify the object that contains this For each we will
see this navigation list, which warns us that there is no index for the attribute by
which we want to sort the query and that therefore we could notice a low
performance.
"We might" doesn't mean that this will indeed be the case. Why? Because it
depends not only on the amount of data in the table, but also on the DBMS and its
strategies. The navigation list shows the worst case scenario: here the whole table

for each Attraction
order AttractionName
where CountryId = &countryId
where CityId = &cityId
print attractionInfo //AttractionName

endfor

Net SQL Server-

Java Oracle-

………..……………………………………………………

must be run through ordered by an attribute for which there is possibly no index (GeneXus doesn't
know if the DBMS created it or not, and has no information about it). So, in the worst case scenario,
which is that of centralized architectures, it may have to temporarily create the index to solve the
query in that order and thus run through the entire table to evaluate each record individually to
determine whether it meets the filters or not. This would be the scenario of a poor database
management system.
Let's think, for example, that in this case using the foreign key index {CountryId, CityId}, which we
know exists because GeneXus forces it to be created, might be a better strategy. Then the records that
meet the filters are obtained in an optimal way and, with that result, it is sorted by AttractionName.
The best strategy will depend largely on the distribution of the data. If there are only 3 attractions
from that country and city out of millions, this seems a better strategy because the cost of sorting 3
records is insignificant. However, if there are millions of records in the table and most of them are
from that country and city, using the index by country and city will not significantly reduce the query
of the entire table. Therefore, sorting the result by AttractionName will be almost the same as sorting
by AttractionName and then evaluating each record individually to determine if it also corresponds to
the country/city or not. GeneXus doesn't know the data distribution to make this kind of decisions. In
addition, if this same query has already been performed before, the DBMS will probably cache the
result and will not have to perform the query in the same way again. This is, of course, if the filters and
the data do not change.

Ultimately, then, the navigation list provides information based on the most conservative scenario,
with the worst DBMS. However, it is possible that the DBMS will greatly improve the most pessimistic
scenario and the query will be optimized.

4

………..……………………………………………………

We might be tempted to think that if we know there will be millions of records in
the Attraction table, it will be best to instruct the DBMS from GeneXus to create
the user index by AttractionName. In that case, the database will be reorganized.
When the object is specified again, GeneXus will inform us that it will use the new
index to solve the query and the performance warning will no longer be shown.

However, this can be a much worse solution. Precisely, if the DBMS is intelligent, it
will not need to be forced to create an index at all. It will do it itself if necessary. So
much so that even in this case in which GeneXus itself requested the creation of
the index, it doesn't send it to the DBMS when it performs the query from an
environment with an intelligent DBMS.

for each Attraction
order AttractionName
where CountryId = &countryId
where CityId = &cityId
print attractionInfo //AttractionName

endfor

Net SQL Server-

Java Oracle-

………..……………………………………………………

Just look at the source generated for the Net environment against SQL Server. In
the Select statement no information is being sent about the index to be used. Why
would it send it if the DBMS knows of its existence? If it needs it, it will use it. And
if it doesn't, it's because it will use a better strategy.

We may suppose that the case would be different if the DBMS was not intelligent.

………..……………………………………………………

We must take into account that creating an index is costly, not only when creating
it, but also later on when maintaining it, during the whole life cycle of the table.
Every time the table is updated, a small price is paid to maintain it.

That's why creating user indexes doesn't seem to be a good practice, unless they
are needed to control uniqueness; that is, to define candidate keys, such as unique
indexes.

for each Attraction
order AttractionName
where CountryId = &countryId
where CityId = &cityId
print attractionInfo //AttractionName

endfor

Net SQL Server-

Java Oracle-

………..……………………………………………………

So, as we said, the GeneXus specifier does the best it can with the information it
has and with its current intelligence (it is expected that this intelligence will
increase as GeneXus evolves). It sends the query as optimized as possible to the
DBMS without providing obvious information, knowing that in the worst case it
will take it but in general it will improve it.

In short, we can never be sure that what is shown in the navigation list will be
what the DBMS will finally do if it is intelligent. What we do know is that it will be
that or something better.

Let's look at examples of the current intelligence of the GeneXus specifier,
regardless what the DBMS ends up doing later.

We know that the order in which the resulting records will be returned is
determined based on the developer's specification in the order clause, but also on
internal optimization algorithms.

for each Attraction
order AttractionName
where CountryId = &countryId
where CityId = &cityId
print attractionInfo //AttractionName

endfor

Net SQL Server-

Java Oracle-

………..……………………………………………………

For example, if we didn't care about how the attraction names will be sorted we
could write the For each without the order clause. In general, we knew that if we
did this the query would be sorted by primary key. That is to say, a Select with
AttractionId order was sent to the DBMS. However, in this case something
different will happen, as we can see in the navigation list. We know that the
database has an index by CountryId and CityId, the two equality filters. We know
this because they form a foreign key. Clearly, then, it will be preferable to use that
index and return the query sorted by those values.
That's why if we look at the query sent by the source to the DBMS, we find this
ORDER BY. If not specifying the order clause meant that we wanted the queries to
be sorted by primary key, in this case we will have to make it explicit.

Similarly, if now the query is this other one, where we are asking for the
attractions to be sorted by city identifier, and we are only filtering by country
identifier, we will see that the navigation list will not ask to sort by CityId, but by
the pair. In this way, it optimizes the query as it knows about the existence of the
composite index (because it is a foreign key, precisely), without failing to achieve
the sorting result requested by the developer.

In short, with the order clause the developer indicates the order in which they
want the records to be returned, but for this the specifier could alter this clause,
complementing it with contextual information (if there are implicit or explicit
equality conditions and there is an index that contains them, in addition to the
attributes of the order) in order to optimize the query, although the DBMS will
have the last word.

skip expression1 count expression2

order att1, att2, … , attn [when condition]

order att1, att2, … , attn [when condition]

order none

unique att1, att2, … , attn

using DataSelector (parm1, parm2, … , parmn)

where condition [when condition]

where condition [when condition]

where att IN DataSelector (parm1, parm2, … , parmn)

blocking n

main_code

when duplicate

when_duplicate_code

when none

when_none_code

BaseTrn1 , … , BaseTrnnFor each

endfor

for each Attraction

where CountryId = &countryId
where CityId = &cityId
print attractionInfo //AttractionName

endfor

"SELECT [CityId], [CountryId],
[AttractionName], [AttractionId] FROM
[Attraction] WHERE [CountryId] =
@AV14countryId and [CityId] = @AV15cityId
ORDER BY [CountryId], [CityId]"

………..……………………………………………………

It is important to understand that the data will be returned in the order specified by the developer,
even if other criteria are used to solve the query.

9

………..……………………………………………………

If not specifying the order clause meant that we wanted the queries to be sorted
by primary key, in this case we will have to make it explicit.

skip expression1 count expression2

order att1, att2, … , attn [when condition]

order att1, att2, … , attn [when condition]

order none

unique att1, att2, … , attn

using DataSelector (parm1, parm2, … , parmn)

where condition [when condition]

where condition [when condition]

where att IN DataSelector (parm1, parm2, … , parmn)

blocking n

main_code

when duplicate

when_duplicate_code

when none

when_none_code

BaseTrn1 , … , BaseTrnnFor each

endfor

for each Attraction

where CountryId = &countryId
where CityId = &cityId
print attractionInfo //AttractionName

endfor

"SELECT [CityId], [CountryId],
[AttractionName], [AttractionId] FROM
[Attraction] WHERE [CountryId] =
@AV14countryId and [CityId] = @AV15cityId
ORDER BY [CountryId], [CityId]"

order AttractionId

[AttractionId]

………..……………………………………………………

Similarly, if now the query is this other one, where we are asking for the
attractions to be sorted by city identifier, and we are only filtering by country
identifier, we will see that the navigation list will not ask to sort by CityId, but by
the pair. The reason is that this optimizes the query, since it knows about the
existence of the composite index (because it is a foreign key, precisely), without
failing to achieve the sorting result requested by the developer.

In short, with the order clause the developer indicates the order in which they
want the records to be returned, but for this the specifier could alter this clause,
complementing it with contextual information (if there are implicit or explicit
equality conditions and there is an index that contains them, in addition to the
attributes of the order) in order to optimize the query, although the DBMS will
have the last word.

It is important to understand that the data will be returned in the order specified
by the developer, even if other criteria are used to solve the query.

skip expression1 count expression2

order att1, att2, … , attn [when condition]

order att1, att2, … , attn [when condition]

order none

unique att1, att2, … , attn

using DataSelector (parm1, parm2, … , parmn)

where condition [when condition]

where condition [when condition]

where att IN DataSelector (parm1, parm2, … , parmn)

blocking n

main_code

when duplicate

when_duplicate_code

when none

when_none_code

BaseTrn1 , … , BaseTrnnFor each

endfor

for each Attraction

where CountryId = &countryId
where CityId = &cityId
print attractionInfo //AttractionName

endfor

for each Attraction
order CityId
where CountryId = &countryId
print attractionInfo //AttractionName

endfor

"SELECT [CityId], [CountryId],
[AttractionName], [AttractionId] FROM
[Attraction] WHERE [CountryId] =
@AV14countryId and [CityId] = @AV15cityId
ORDER BY [CountryId], [CityId]"

………..……………………………………………………

In this case where no order was specified, since there is an index that allows
optimizing these conditions, it is chosen instead of the index by primary key.

When there is no index, it chooses the primary key. Here we see the SQL
statement created by GeneXus.

skip expression1 count expression2

order att1, att2, … , attn [when condition]

order att1, att2, … , attn [when condition]

order none

unique att1, att2, … , attn

using DataSelector (parm1, parm2, … , parmn)

where condition [when condition]

where condition [when condition]

where att IN DataSelector (parm1, parm2, … , parmn)

blocking n

main_code

when duplicate

when_duplicate_code

when none

when_none_code

BaseTrn1 , … , BaseTrnnFor each

endfor

for each Attraction

where AttractionName = &attractionName
print attractionInfo //AttractionName

endfor

for each Attraction

where CountryId = &countryId
where CityId = &cityId
print attractionInfo //AttractionName

endfor

"SELECT [AttractionName], [AttractionId]
FROM [Attraction] WHERE [AttractionName] =
@AV8AttractionName ORDER BY [AttractionId]"

"SELECT [CityId], [CountryId],
[AttractionName], [AttractionId] FROM
[Attraction] WHERE [CountryId] =
@AV14countryId and [CityId] = @AV15cityId
ORDER BY [CountryId], [CityId]"

………..……………………………………………………

Unless we specify an Order none clause, in which case we leave it up to the DBMS
to choose the order. ORDER BY is not added to the SQL statement created by
GeneXus.

skip expression1 count expression2

order att1, att2, … , attn [when condition]

order att1, att2, … , attn [when condition]

order none

unique att1, att2, … , attn

using DataSelector (parm1, parm2, … , parmn)

where condition [when condition]

where condition [when condition]

where att IN DataSelector (parm1, parm2, … , parmn)

blocking n

main_code

when duplicate

when_duplicate_code

when none

when_none_code

BaseTrn1 , … , BaseTrnnFor each

endfor

for each Attraction

where AttractionName = &attractionName
print attractionInfo //AttractionName

endfor

for each Attraction

where CountryId = &countryId
where CityId = &cityId
print attractionInfo //AttractionName

endfor

"SELECT [AttractionName], [AttractionId]
FROM [Attraction] WHERE [AttractionName] =
@AV8AttractionName ORDER BY [AttractionId]"

order NONE

"SELECT [CityId], [CountryId],
[AttractionName], [AttractionId] FROM
[Attraction] WHERE [CountryId] =
@AV14countryId and [CityId] = @AV15cityId
ORDER BY [CountryId], [CityId]"

………..……………………………………………………

Let's go back to this example. If GeneXus asked to create this composite user
index, then it will propose it in the navigation list (even if in the end it doesn't send
it to the SQL Server, because the SQL Server already knows about its existence, so
why tell it something it already knows). What’s remarkable is that it notifies us
that at least this optimization will be performed by the DBMS. It will be like this or
better.

On the other hand, if the user index doesn't exist, the navigation list will show us
this other one, even if the source is exactly the same.

So? Let's say it again: the navigation list shows the worst case scenario. If the index
exists, we know that the worst case scenario will be pretty good. That's if the index
was previously created for some other reason, so we take advantage of it.
Creating the index just to make sure this navigation is optimized doesn't seem to
be a good idea if we’re using an intelligent DBMS. And neither if the DBMS was not
intelligent but the table had few records. In short, create indexes only after
noticing performance issues and evaluating the pros and cons.

skip expression1 count expression2

order att1, att2, … , attn [when condition]

order att1, att2, … , attn [when condition]

order none

unique att1, att2, … , attn

using DataSelector (parm1, parm2, … , parmn)

where condition [when condition]

where condition [when condition]

where att IN DataSelector (parm1, parm2, … , parmn)

blocking n

main_code

when duplicate

when_duplicate_code

when none

when_none_code

BaseTrn1 , … , BaseTrnnFor each

endfor

for each Attraction
order AttractionName
where CountryId = &countryId
where CityId = &cityId
print attractionInfo

endfor

"SELECT [CityId], [CountryId],
[AttractionName], [AttractionId] FROM
[Attraction] WHERE ([CountryId] =
@AV14countryId) AND ([CityId] = @AV15cityId)
ORDER BY [AttractionName] "

………..……………………………………………………

Here is another example of the way GeneXus tries to make improvements:

If we want to get all the city names for which there are tourist attractions, we use
the unique clause by CountryId, CityId, so that of all the attractions that share a
country and city only one is left, in order to list its city name in the output. If we
want this output to be sorted by city name, we place the order clause and see that
in the navigation list the specifier writes exactly that order, for which it doesn't
know any index. It will be up to the DBMS to optimize this query.

On the other hand, if we don't care about the order in which those cities are
displayed in the output, then let's see that by not writing it, the specifier chooses
to sort by the attributes that we are asking to be unique, since it has an index by
them.

skip expression1 count expression2

order att1, att2, … , attn [when condition]

order att1, att2, … , attn [when condition]

order none

unique att1, att2, … , attn

using DataSelector (parm1, parm2, … , parmn)

where condition [when condition]

where condition [when condition]

where att IN DataSelector (parm1, parm2, … , parmn)

blocking n

main_code

when duplicate

when_duplicate_code

when none

when_none_code

BaseTrn1 , … , BaseTrnnFor each

endfor

for each Attraction
//order CityName
unique CountryId, CityId

print relevantInfo //CityName
endfor

for each Attraction
order CityName
unique CountryId, CityId

print relevantInfo //CityName
endfor

"SELECT DISTINCT T1.[CityId], T1.[CountryId],
T2.[CityName] FROM ([Attraction] T1 INNER JOIN
[CountryCity] T2 ON T2.[CountryId] = T1.[CountryId] AND
T2.[CityId] = T1.[CityId])
ORDER BY T2.[CityName] "

"SELECT DISTINCT T2.[CityName], T1.[CityId],
T1.[CountryId] FROM ([Attraction] T1 INNER JOIN
[CountryCity] T2 ON T2.[CountryId] = T1.[CountryId] AND
T2.[CityId] = T1.[CityId])
ORDER BY T1.[CountryId], T1.[CityId] "

………..……………………………………………………

Now let's review the conditional order clauses.

skip expression1 count expression2

order att1, att2, … , attn [when condition]

order att1, att2, … , attn [when condition]

order none [when condition]

unique att1, att2, … , attn

using DataSelector (parm1, parm2, … , parmn)

where condition [when condition]

where condition [when condition]

where att IN DataSelector (parm1, parm2, … , parmn)

blocking n

main_code

when duplicate

when_duplicate_code

when none

when_none_code

BaseTrn1 , … , BaseTrnnFor each

endfor

………..……………………………………………………

From this Web Panel, we want to list the tourist attractions while allowing the user
to filter those of a given category—such as Tourist Site—of a given country, and
whose name comes after a given value. So by pressing the button we call this
procedure, passing it the three variables.
If the user doesn't enter a value in one of the filter variables, we won't want that
filter to be applied, and that's why we condition the three Where clauses.
If, regardless of the filters applied, we wanted the attractions to be displayed
sorted by attraction name, then we would write a single unconditional order
clause.

………..……………………………………………………

Let's run the web Panel that we set as main to make it easier to run.

In the navigation list, we see that the filters are shown in the Constraints section.
This is not only because there is no index for optimizing, but also because they
contain the When conditions. All Where conditionals will be displayed in the
Constraints section, but that doesn't mean that the query will not be optimized.
We will come back to this.

Here is the list of all attractions, since none of the 3 filters will have been applied.
Note they are listed sorted by attraction name, as requested.
If we now ask to list the attractions in category 3 which is Tourist Site, the result is
also shown sorted by AttractionName and not sorted by country.

………..……………………………………………………

But let's suppose that if we don't filter by category—that is, this variable is
empty—we want them sorted by category name and that, instead, if a value is
selected for &categoryId—for example, Tourist Site—we want it to be sorted by
country name if no country was selected—that is, this variable was left empty.
Also, only in the opposite case—when filtering by category and country—we want
it to be sorted by attraction name.

Note that the navigation list shows the conditional order clauses, where the last
one is unconditional. Unlike the where clauses that do an AND between them, only
one of the order clauses will be applied. For this, the first condition that is True will
make its order clause the chosen one. It will only be ordered by the unconditional
one if none of the conditions of the previous order clauses are satisfied. Of course,
we might not place an unconditional order clause, and there the order would not
be defined if none of the conditions are met.

………..……………………………………………………

We can quickly see that if we don't select a category, it will be sorted by it.
On the other hand, if we do select a category and leave the country unselected,
then it will be sorted by country and not sorted by the rest.
If we now select category and country, it will be sorted by attraction name.

………..……………………………………………………

If we look at the source, to see how the SQL statement sent to the manager is
built... we see that first it assembles the first fixed part of the select (that of the
attributes to be selected and from which tables with the joins to access the
extended one...) but then it dynamically complements the Where part from the
evaluation of the variables (adding Where when the variables are not empty).

………..……………………………………………………

And for the ORDER BY of the SQL statement it does something similar, only with
nested if, to reflect exactly what we said before: only an order clause will be added
to the Select.

These evaluations to obtain the final SQL statement that is sent to the DBMS to
solve the query are done dynamically at runtime. Every time this list is run, this
section of code must be executed to build the final query.

………..……………………………………………………

If this For each were included in another repetitive structure run for millions of
records, the cost of dynamically building the query could be significant.

For each

endfor

For each Attraction

where CategoryId = &categoryId when not &categoryId.IsEmpty()
where CountryId = &countryId when not &countryId.IsEmpty()
where AttractionName >= &attractionName when not &attractionName.IsEmpty()

print info // CategoryName, CountryName, AttractionName

endfor

order CategoryName when &categoryId.IsEmpty()
order CountryName when &countryName.IsEmpty()
order AttractionName

………..……………………………………………………

In the previous example, we used conditional orders because we wanted to display
the information sorted differently based on conditions. That is, the order clauses
fulfilled a logical requirement of the query. You could say they were part of the
wording of the problem, even though they were not necessary in this case. So,
let's think that it was enough to choose this unconditional order to meet the
requirement.

For each Attraction

where CategoryId = &categoryId when not &categoryId.IsEmpty()
where CountryId = &countryId when not &countryId.IsEmpty()
where AttractionName >= &attractionName when not &attractionName.IsEmpty()

print info // CategoryName, CountryName, AttractionName

endfor

order CategoryName when &categoryId.IsEmpty()
order CountryName when &countryId.IsEmpty()
order AttractionName
order CategoryName, CountryName, AttractionName

………..……………………………………………………

But many times, as we saw for the case of a single unconditional order clause, it is
specified for optimization purposes and is not a requirement. In such cases,
choosing filter-compatible orders is usually a good practice, especially in the case
of unintelligent DBMSs.

For example, if we didn't care about the order in which the information would be
listed, we could place these other order clauses. This will translate dynamically as
follows: if &categoryId is not empty, then we know the query will be similar to....

For each Attraction

where CategoryId = &categoryId when not &categoryId.IsEmpty()
where CountryId = &countryId when not &countryId.IsEmpty()
where AttractionName >= &attractionName when not &attractionName.IsEmpty()

print info // CategoryName, CountryName, AttractionName

endfor

order CategoryId when not &categoryId.IsEmpty()
order CountryId when not &countryId.IsEmpty()
order AttractionName when not &attractionName.IsEmpty()

………..……………………………………………………

...this one, where depending on whether &countryId is empty or not, and whether
&attractionName is empty or not, the final query will look like this, like this, or like
this.

Note that, in any case, since there is an index by CategoryId, at least the first
Where clause will be optimized.

For each Attraction
order CategoryId
where CategoryId = &categoryId
where CountryId = &countryId when not &countryId.IsEmpty()
where AttractionName >= &attractionName when not &attractionName.IsEmpty()
print info // CategoryName, CountryName, AttractionName

endfor

For each Attraction
order CategoryId
where CategoryId = &categoryId
where CountryId = &countryId
where AttractionName >= &attractionName
print info // CategoryName, CountryName, AttractionName

endfor

For each Attraction
order CategoryId
where CategoryId = &categoryId
where AttractionName >= &attractionName
print info // CategoryName, CountryName, AttractionName

endfor

For each Attraction
order CategoryId
where CategoryId = &categoryId
where CountryId = &countryId
print info // CategoryName, CountryName, AttractionName

endfor

………..……………………………………………………

On the other hand, if &categoryId is empty, then if &countryId is not, the query
will look like this or like that, depending on whether &attractionName is empty or
not.

In either case, it will be optimized in relation to the filter by CountryId, since it has
an index because it is a foreign key.

For each Attraction

where CategoryId = &categoryId when not &categoryId.IsEmpty()
where CountryId = &countryId when not &countryId.IsEmpty()
where AttractionName >= &attractionName when not &attractionName.IsEmpty()

print info // CategoryName, CountryName, AttractionName

endfor

order CategoryId when not &categoryId.IsEmpty()
order CountryId when not &countryId.IsEmpty()
order AttractionName when not &attractionName.IsEmpty()

For each Attraction
order CountryId
where CountryId = &countryId
where AttractionName >= &attractionName
print info // CategoryName, CountryName, AttractionName

endfor

For each Attraction
order CountryId
where CountryId = &countryId
print info // CategoryName, CountryName, AttractionName

endfor

………..……………………………………………………

If &countryId is empty as well, then if &attractionName is not, the query will look
like this. And if it is, it will look like this but the order will be undefined. This means
that it can vary depending on the DBMS and even between successive executions.

In the first case, as we are not aware of the existence of an index by
AttractionName, we don't know how optimized the query will be.

For each Attraction

where CategoryId = &categoryId when not &categoryId.IsEmpty()
where CountryId = &countryId when not &countryId.IsEmpty()
where AttractionName >= &attractionName when not &attractionName.IsEmpty()

print info // CategoryName, CountryName, AttractionName

endfor

order CategoryId when not &categoryId.IsEmpty()
order CountryId when not &countryId.IsEmpty()
order AttractionName when not &attractionName.IsEmpty()

For each Attraction
order AttractionName
where AttractionName >= &attractionName
print info // CategoryName, CountryName, AttractionName

endfor

For each Attraction
print info // CategoryName, CountryName, AttractionName

Endfor

………..……………………………………………………

The navigation list shows that the filters are still displayed in the Constraints
section, although we know that depending on the values of the variables some of
them should be displayed in the Navigation filters. This is because the navigation
list doesn't perform the breakdown we did before. We must understand, then,
that the scenario will be better than it may seem at first glance without taking into
account all of the above.

for each Attraction
order CategoryId when not &categoryId.IsEmpty()
order CountryId when not &CountryId.IsEmpty()
order AttractionName when not &AttractionName.IsEmpty()
where CategoryId = &categoryId when not &categoryId.IsEmpty()
where CountryId = &countryId when not &countryId.IsEmpty()
where AttractionName >= &AttractionName when not &AttractionName.IsEmpty()

print attractionInfo
endfor

………..……………………………………………………

What else can be said about conditional orders?

They are not supported in control breaks.
They do not apply to legacy Cobol and RPG generators.
If the conditions have attributes, they are considered as instantiated; that is, they
are evaluated before starting the navigation and do not change in the process.

This is the end of our exploration of query orders.

skip expression1 count expression2

order att1, att2, … , attn [when condition]

order att1, att2, … , attn [when condition]

order none [when condition]

unique att1, att2, … , attn

using DataSelector (parm1, parm2, … , parmn)

where condition [when condition]

where condition [when condition]

where att IN DataSelector (parm1, parm2, … , parmn)

blocking n

main_code

when duplicate

when_duplicate_code

when none

when_none_code

BaseTrn1 , … , BaseTrnnFor each

endfor

………..……………………………………………………

For each BaseTrn
skip exp count exp
order att…
unique att…
using DataSelector(parm…)
where condition when condition
blocking n

DP Group BaseTrn
skip exp count exp
order att…
unique att…
using DataSelector(parm…)
where condition when condition

Grids Base Trn property
Order property
Conditions property
Unique property
Data Selector property

Navigation
groups

Of course, what we saw for the For each is valid for groups of Data Providers and
grids with a base table, as well as for queries with In in Data Selectors.

31

