
Normalization of tables

A Case Study

Throughout the course we have been discussing how GeneXus determines
the database structure from the transaction design.

also seen that it automatically makes referential integrity checks, and to
do so it uses the primary and foreign indexes that it creates in each table.

We will now look at a case study to analyze how GeneXus normalizes the
database and determines the table structure from a given transaction design.



Normalized database: Concept

Let's start then with the concept of a normalized database. What does it
mean?

It means there are no duplicated data, no redundancies. Secondary
attributes are present in a single table



Normalized database: Concept

3



Normalized database: Concept

..and the only attributes that can be included in more than one table are
primary keys, since they are also foreign keys in other tables.

4



Case Study: Transaction design

Trip
TripId* 
TripDate
TripPrice
TouristGuideId
TouristGuideName
CountryId
CountryName

Customer
CustomerId* 
CustomerName
CustomerTripsQty
Trip
(

TripId* 
TripDate
TripPrice
CountryId
CountryName
CustomerTripMiles

)

Country
CountryId* (PK)
CountryName (Sec)

TouristGuide
TouristGuideId* (PK)
TouristGuideName (Sec)

Let's look at the case study then. Consider the following transaction
design, where you can see that we are modeling Countries, Trips or
tours to a certain country with a Tour Guide in charge, and the Clients
who can take several of these trips or tours.

The first thing to remember and keep in mind is that we cannot look at
each transaction independently but must analyze the entire data model.
Each transaction generates an impact on that data model.

Note that Country and TouristGuide transactions are simple, single-level
transactions, each with its own identifier and name, and without any
foreign keys. Each one then has its primary key and a secondary
attribute.

5



Case Study: Normalized tables

COUNTRY
CountryId* 
CountryName

TOURISTGUIDE
TouristGuideId* 
TouristGuideName

Therefore, we already know that from them GeneXus will create the
tables COUNTRY and TOURISTGUIDE with the structure shown here:

The COUNTRY table has CountryId as the primary key and
CountryName as the secondary attribute. Over this table then, GeneXus
will create the primary index by CountryId.

Remember that GeneXus automatically creates the primary indexes to
control the uniqueness of the primary key and to efficiently perform the
reference integrity checks.

The TOURISTGUIDE table has TouristGuideId as primary key and
TouristGuideName as secondary attribute. In this table, GeneXus will
create the corresponding primary index by the TouristGuideId attribute.

6



Case Study: Transaction design

Customer
CustomerId* 
CustomerName
CustomerTripsQty
Trip
(

TripId* 
TripDate
TripPrice
CountryId
CountryName
CustomerTripMiles

)

1 N

1

N
Trip
TripId* (PK)
TripDate (Sec)
TripPrice (Sec)
TouristGuideId (FK)
TouristGuideName (Inf)
CountryId (FK)
CountryName (Inf)

Country
CountryId* (PK)
CountryName (Sec)

TouristGuide
TouristGuideId* (PK)
TouristGuideName (Sec)

take a look at the Trip transaction: It has TripId as a primary
attribute, and TripDate and TripPrice as secondary attributes. Then
TouristGuideId is the foreign key in this transaction. And
TouristGuideName is inferred from that value. There is a 1-N relationship
between TouristGuide and Trip.

Something similar happens with the CountryId attribute which is a
foreign key here, and CountryName which is inferred from that value.
There is also a 1-N relationship between Country and Trip.

7



Case Study: Normalized tables

COUNTRY
CountryId* 
CountryName

TOURISTGUIDE
TouristGuideId* 
TouristGuideName

TRIP
TripId* 
TripDate
TripPrice
TouristGuideId
CountryId

We already know that the inferred attributes are not stored because GeneXus
gets their value from the corresponding foreign keys; so, what will be the
structure of the table associated with the Trip transaction?

Its primary key TripId, and the attributes TripDate, TripPrice, TouristGuideId and
CountryId.

If we now think about the indexes, which indexes will be created by GeneXus
over the TRIP table?

The primary index by TripId, and the foreign indexes by CountryId and
TouristGuideId

This means that, for example, when inserting a trip, the primary index by TripId
will control the uniqueness of its value, i.e. that there is no longer another trip
with the same primary key value.
The primary index by TouristGuideId in the TOURISTGUIDE table will allow
performing the referential integrity checks by making sure that the value of the
foreign key TouristGuideId indicated in Trip previously exists as primary key in
the TOURISTGUIDE table.

The same control will be made by the primary index by CountryId defined in the
COUNTRY table. It will check that the value indicated here previously exists as
the primary key in COUNTRY.

On the other hand, if we try for example to remove a tour guide through the
TouristGuide transaction, the foreign index by TouristGuideId defined in Trip will
check that there is no tour registered with this TouristGuideId value.

8



If there is one, GeneXus will warn you that there are records in Trip that have in
TouristGuideId the value you are trying to delete, and it will not allow deleting it.



Case Study: Transaction design

Trip
TripId* (PK)
TripDate (Sec)
TripPrice (Sec)
TouristGuideId (FK)
TouristGuideName (Inf)
CountryId (FK)
CountryName (Inf)

Country
CountryId* (PK)
CountryName (Sec)

TouristGuide
TouristGuideId* (PK)
TouristGuideName (Sec)

Customer
CustomerId* (PK)
CustomerName (Sec)
CustomerTripsQty (GLOBAL 
FORMULA)
Trip
(

TripId* (PK) - (FK)
TripDate (Inf)
TripPrice (Inf)
CountryId (Inf)
CountryName (Inf)
CustomerTripMiles (Sec)

)

Now let's look at the Customer transaction. It is a two-level transaction,
with TripId as primary key of the second level. This indicates an N-N
relationship between Customer and Trip. And we already know that from
this transaction design GeneXus will create two tables: CUSTOMER and
CUSTOMERTRIP.

But let's focus on the first level of the transaction.

Let's focus on the second level now. TripId is its primary key, but it is also a
foreign key, and we see TripDate, TripPrice, CountryId and CountryName.

If we look again at the structure of the Trip transaction, these attributes are
present there; therefore, all of them are obtained inferred , from the
value of their primary key TripId.

This means that now in the second level of Customer, these attributes will
be inferred by the TripId value. So, CountryId was a direct foreign key,
stored in Trip, and now is an inferred foreign key on this second level of
Customer.

9



Case Study: Normalized tables

COUNTRY
CountryId* 
CountryName

TOURISTGUIDE
TouristGuideId* 
TouristGuideName

TRIP
TripId* 
TripDate
TripPrice
TouristGuideId
CountryId

CUSTOMER
CustomerId* 
CustomerName

CUSTOMERTRIP
CustomerId* 
TripId*
CustomerTripMiles

How does the structure of the tables based on the Customer transaction
look?

The CUSTOMER table associated with the first level, with CustomerId as
the primary key and CustomerName. Remember that the attribute
CustomerTripsQty, when calculated, is not saved in the associated table.
And then the CUSTOMERTRIP table associated with the second level of
the Customer transaction, with the pair CustomerId, TripId as primary key
and the secondary attribute CustomerTripMiles.

As for the indexes, in CUSTOMER the primary index by CustomerId will be
created.
In CUSTOMERTRIP, its corresponding primary index will be created by the
attribute pair CustomerId, TripId, and then the corresponding foreign
indexes by TripId and CustomerId.

Note that no index is created on this table by CountryId, because as
explained before, in this table it is not a direct foreign key but inferred
through the value of TripId.

10



Finally

Trip
TripId* 
TripDate
TripPrice
TouristGuideId
TouristGuideName
CountryId
CountryName

Customer
CustomerId* 
CustomerName
CustomerTripsQty Count(TripId)
Trip
(

TripId* 
TripDate
TripPrice
CountryId
CountryName
CustomerTripMiles

)

Country
CountryId* 
CountryName

TouristGuide
TouristGuideId* 
TouristGuideName

COUNTRY

CountryId* 
CountryName

TOURISTGUIDE
TouristGuideId* 
TouristGuideName

TRIP
TripId* 
TripDate
TripPrice
TouristGuideId
CountryId

CUSTOMER
CustomerId* 
CustomerName

CUSTOMERTRIP
CustomerId* 
TripId*
CustomerTripMiles

Transaction design

Normalized tables.

In this way then, we have analyzed that from this transaction design,
GeneXus creates this normalized structure in the database.

11



training.genexus.com
wiki.genexus.com


