
1



In previous videos we have studied the case of multiple references from
one table to another directly related to it

2



...and also the case in which these references are indirectly related, since
from one table we have two paths to get to another, so it is often
necessary to perform disambiguation using subtypes.

In this video, we will study another case of indirect multiple reference, its
problems, and possible solutions.

3



Suppose we need to register the tours that are offered to the travel
agent's customers for visiting the different tourist attractions of a given
city.

To do so, we will create the CityTour transaction, where in the first level, in
addition to registering the name of the tour, we will specify its country and
city. The second level will indicate the tourist attractions visited during the
tour.

Note that each tourist attraction has a country and city defined, so if we
do nothing, the user may enter for a city tour an attraction that is not in
the same country or city of the city tour.

4



If we look at the table diagram, we can clearly see that we have two
different ways to get from the second level of CityTour to the cities table.
That is, in the extended table of CityTourAttraction there is the cities table,
CountryCity, but we get to it by two different ways, and starting from a
CityTourAttraction record, we are not sure if the city of the city tour
matches the city of the attraction.

To make sure that both paths match when inserting or modifying city
tours, the use of subtypes is not mandatory.

5



We could, for example, invoke a procedure in the rules of the CityTour
transaction to which we send in a parameter the attributes CountryId,
CityId and AttractionId, and what it will do is to check that the pair
CountryId, CityId, which is clearly that of CityTour, matches the pair that is
found when accessing the Attraction record according to the attraction
that we want to add to the city tour.

Here we see that the procedure receives in variables the ID of the country
and city of the CityTour, and in an attribute the AttractionId of the line that
we want to check. And it will return a Boolean value that indicates whether
country and city match or not.

6



Then in the Source we access the table of the Attraction transaction and
in two new variables we load the country and city of the attraction
(through the automatic filter).

A Boolean variable returns True if the country received in a parameter
matches that of the attraction and also the city received in a parameter
matches that of the attraction. Otherwise, False is returned.

This is how in the transaction we condition the error rule to be triggered if
the procedure returned False.

7



Let's see this in GeneXus.
If we now run the transaction with a city tour that we had already loaded
and that runs through Beijing, with the two attractions that we see in
Beijing, and we want to add another one, which is not from Beijing, such
as the Eiffel Tower, we see how the error is being thrown correctly.

And if we add one from Beijing, such as the forbidden city, we can save
without any problem.

8



In this way, we did not have to use subtypes to ensure this check through
the transaction. Note, however, that we had to call a procedure to be able
to access the attraction's CountryId and CityId attributes without
ambiguity, loading them manually into two variables, so that they are not
confused with those of the CityTour.

We will have this problem every time we are doing something with a
record of the CityTourAttraction table and we need to obtain the country -
city pair. Because the question is, which one? The CityTour pair or the
Attraction pair?

9



For example, let's suppose we want to run through the table of the
Attraction level of CityTour and show the name of the attraction, its
country and city, and its photo. How do we know if it will take the
CountryName and CityName attributes from the CountryId and CityId of
the Attraction table or if it will take them from those of the CityTour table?
There is an ambiguity here. It will take them from either of them. To find
out specifically which one it chose, we read the navigation list. The
navigation list indicates that from CityTourAttraction it will access
CityTour, just to bring the country and city ID, and Attraction to bring the
other attributes that we want to list, which are the photo and the name. In
short, we can see that it didn't choose to show the country and city of the
attraction, but the country and city of the CityTour.

In this case, this ambiguity doesn't matter because every time an
attraction is entered we check that these values match. And that is why in
the list it seems that we are looking at the country and city of the
attraction and not of the city tour.
However, as soon as we override that data check, for example, by going to
the Attraction transaction and changing the city of the Eiffel Tower to Nice
instead of Paris, we see that the list still shows Paris, because it is the one
of the CityTour where the Eiffel Tower is, and not the one of the attraction
itself. It allowed us to break our rule because it is defined only in the
CityTour transaction, and we made the change in Attraction, and even
opening the transaction does not cause the error because we are not
doing anything with the line.
Therefore, we clearly see that we would need to check everywhere this

10



data can be modified.

10



If we are sure that the check will be performed everywhere and therefore
the data on both paths will always match, then we may not care which
path is chosen to retrieve it. Although sometimes it does, for performance
reasons. In the example we saw of the list of attractions of the city tours,
having to access only Attraction to go to CountryCity and Country is more
efficient than having to go to Attraction to retrieve its name and photo
and then to CityTour to go to CountryCity and Country.

If we need to be able to indicate at a given moment one of the two paths,
because they are not the same, subtypes can be used.

We will analyze three possibilities, starting with two obvious ones and
ending with the least obvious one.

11



The first will be to modify the name of the country-city attributes in this
path, in order to be able to identify it.

Thus, we define a group of subtypes for the country and city of attraction.

Note that this group has two primary attributes: AttractionCountryId and
AttractionCityId, which correspond to the primary key of the CountryCity
table, according to the supertypes indicated: {CountryId, CityId}.

And that we replaced the supertypes with these subtypes in the Attraction
transaction.

Thus, we see that the path below can now be identified.
We could even add to the CityTour transaction the country and city
attributes inferred through AttractionId, in order to implement the check
directly through the error rule.

12



Note that after making these changes it is easy to remove the ambiguity
from the list we had before. It is enough to change here CountryName and
CityName for the subtypes.

However, since we already had data in the tables, it indicates that it should
reorganize, in particular, the Attraction table. It must place the new
attributes the subtypes and delete the old ones the supertypes. And
it seems that it will correctly transfer the data from the old attribute, the
supertype, to the new one, the subtype.
However, when reorganizing after completing the specification we find
errors. In particular, it indicates that in the DataProvider to populate the
table with attractions, a Data Provider that we had before, the attribute
CountryId is being used, but it is no longer in Attraction. The same goes
for CityId. Here we clearly see a disadvantage of this solution. We will have
to replace one by one the old attributes with the new ones in all the
objects that already had access to the Attraction table before.

In fact, if we had already been doing development work on the application
where CityTour was not considered, we had not yet encountered any
ambiguity problem, so presumably we already had many other objects
working on CountryId and CityId in Attraction.

If we choose this solution, we will have to solve all these pitfalls.

Leaving that aside, if we now look at the navigation list of the list we were
interested in, we now see that to get country and city for each

13



CityTourAttraction record, it is doing it through the Attraction table, as we wanted. We
removed the ambiguity and explicitly chose the path we wanted.

13



Now let's think of another alternative that is less complicated in relation to
objects that already existed.

This second solution removes the ambiguity by modifying the name of the
country-city attributes in this other path.

14



To do this we define the subtype group for country and city using them
directly in the CityTour transaction header. The result is this change in the
CityTour table (from supertypes to subtypes).

The difference between this solution and the previous one is that it is less
likely that the flat transaction was built first, without the second level
which is the one that introduces the two paths to CountryCity. So it is not
to be expected that there were other objects navigating CityTour before
we thought of adding the second level, and then having to change
attributes for subtypes in the first one.

In other words, it is to be expected that the CityTour and
CityTourAttraction tables are created at the same time, instead of creating
CityTour first, loading data to it and only later realizing that we will also
need a second level (which is the one that generates the two paths and
this solution).

With this solution we can see that the path above is now identifiable, so
that...

15



...for example, we can now implement the match check directly through
the error rule, with no need for the procedure.
To do so, we must add CountryId and CityId to the structure, in order to
use them in the rule. Note that we are clearly told that they are being
inferred from AttractionId.

16



Now we have, then, this solution implemented in GeneXus; clearly if in the
list we were analyzing we leave the supertypes CountryName and
CityName, they will be taken from CountryId and CityId of the Attraction
table. And no longer through the other path, that of CityTour.
confirm this in the navigation list. It shows what we expected. There is no
longer any ambiguity here.

17



We now come to the last alternative with subtypes, which at first seems
less intuitive, but has a great advantage: it provides disambiguation in the
table itself in which the ambiguity occurs. That is to say, the table that
originates the two paths.

If we think about the previous solutions, we are changing the names of the
Country and City attributes in tables that, when looking at their extended
table, have no ambiguity.

18



So, if we look at solution 1, and we think, for example, that we want to
develop a Web Panel that shows the tourist attractions with their country
and city information, we do not understand why there are subtypes in that
table instead of supertypes. Looking from Attraction there is no need to
define them.

19



The same is true if we consider solution 2 and stand on CityTour.

If we wanted to list the city tours with their country and city, positioned on
that base table, we would not understand, either, why subtypes are being
used. Although in this case, as the CityTourAttraction table comes from a
second level of the transaction that generates the CityTour table, they are
more closely related and the rationale for having these subtypes can be
seen more clearly.

20



To perform a disambiguation in the table that causes the two paths seems
to be an advantage. At least in the sense that ambiguity is inherent to this
table, so it will never be unjustified for a subtype to appear there.

Now, how do we perform disambiguation in the table that makes those
two paths appear? In the example, in the CityTourAttraction table itself.

21



What if we define a group of subtypes that allow us to modify the name of
AttractionId when it appears as a foreign key, and all the attributes that are
inferred from it and are of interest to us?

And then in CityTour instead of using the AttractionId attribute, we use
that subtype? And, of course, we must now infer attraction name and
photo also in subtypes of that group.

By doing this, the table diagram becomes like this. Note that the other
tables should not be modified at all, so that all objects that were previously
working on these other tables will continue to do so without any problem.

22



If now we would like to check that the country and city of the city tour are
identical to the country and city of the attraction, it is enough to add to the
transaction structure the two inferred attributes
CityTourAttractionCountryId and CityTourAttractionCityId, and write the
error rule as we see it.

23



With this solution, the list we wanted to disambiguate from the beginning
is very clear.
We run through the Attraction level of the CityTour transaction with a For
each. And here we have to modify the attributes, which are all inferred
from the attraction, but now it is no longer AttractionId, but its subtype.
We change, then, all the attributes for their subtypes. In particular, the
country name, and the city name. But when we look at the navigation list,
it says that precisely these two attributes cannot be reached.

Why? Because while we have these two subtypes defined within the
group, we have not specified them at the level of the transaction we are
running through with the For each. If we now add them which will have
no negative effect since they are inferred , and have the list navigated
again, we find that there is no longer any problem.

And in fact, we see how it is retrieving the information correctly, from the
subtype in the navigated table, accessing the Attraction table and from
there CountryCity and Country.

However, having to add every time all the inferred information that you
want to use in any navigation to the transaction structure can be a bit
annoying.

24



Lastly, every solution has its pros and cons and this depends on the
particular case to which it is being applied.

For example, if all transactions are created together, then the problem of
having other objects using the old attributes from before disappears, and
options 1 and 2 are no longer problematic in that sense. However, they do
not in themselves justify the use of subtypes.

In this case it doesn't seem too much of a problem, because, for solution 1,
while standing in Attraction it is enough to look at the directly
superordinate table to find out why. And the same can be said about
solution 2, while positioned on CityTour.

25



But, if in solution 1 we are positioned on Attraction and there we define
subtypes for CountryId and CityId, and the table that causes the path
ambiguity is far away, then it gets a bit more confusing.

Or if, for solution 2, we are positioned on CityTour, the same happens. It is
no longer so easy to understand what these subtypes are doing there.

On the other hand, if subtypes are created in the table with the ambiguity,
defining one of the foreign keys as a subtype, it is very clear. It is enough
to look at its extended table to find the table that can be reached through
several paths.

26



This is the third solution. The disadvantage of this solution is that in any
object where we must use attributes that are obtained from the foreign
key subtype, we must add them, of course, to the subtype group. There
they will be marked as inferred, but in addition, we must add them to the
transaction structure.

And, of course, it is not clear at first glance that the ambiguity is made by
Country and City. If we analyze the extended table we know by
which of the attributes of the subtype group it was defined. It could have
been by CategoryId, for example.

Here we have presented these three solutions. The developer will choose
the most suitable one according to his/her reality.

27



Now let's look at another use case of subtypes, which we call recursive
subtypes, where we have an entity that must be self-referential.

28



To study this case, let's suppose we are representing the information of
the travel agency employees. Each employee may, in turn, be a manager
of one or more other employees.

29



Of all employees who have a manager, it is necessary to indicate who that 
manager is. 
This manager is, in particular, an employee. Therefore, a relationship is 
established in the employee table with itself.

30



To solve this, we must create a subtype group that represents the
information of the employee's manager.

The EmployeeManagerId attribute will be, for all purposes, taken as an
EmployeeId, and for this reason, it will form a foreign key to the Employee
table itself.

31



So, when entering the information of an employee through the
transaction, when the user chooses a value for the EmployeeManagerId
field, GeneXus will check the referential integrity; that is, it will check that
there is a record in the employee table with that value for the EmployeeId
attribute.

We encourage you to think of real situations in which it is necessary to use
the different use cases of subtypes we have seen and to carry out the
implementation in GeneXus.

32



33


