More Use Cases of Subtypes

GeneXus

MULTIPLE REFERENCES

Direct

In previous videos we have studied the case of multiple references from
one table to another directly related to it...

MULTIPLE REFERENCES

Direct

Indirect

5
«

..and also the case in which these references are indirectly related, since
from one table we have two paths to get to another, so it is often
necessary to perform disambiguation using subtypes.

In this video, we will study another case of indirect multiple reference, its
problems, and possible solutions.

Indirect Multiple References

GeneXus

_. CityTour — Country
¥ cityrourid ¥ countryd
© cityTourName P CountryName
) A Countryld City
= A ¥ CountryName ¥ ciy.
I H 2 Cityld ‘r‘ CityName
= ¥ CityName
A Attraction
/'T/' ¥ Atractionid T3] Attraction

¥ AttractionName
¥ AttractionPhoto

§ Attractionid

P AttractionName

® AttractionDescription
& Countryld
CountryName
Cityld

CityName
Categoryld

K %K %K

CategoryName
lad AttractionPhoto
® AttractionAddress

Suppose we need to register the tours that are offered to the travel
agent's customers for visiting the different tourist attractions of a given
city.

To do so, we will create the CityTour transaction, where in the first level, in
addition to registering the name of the tour, we will specify its country and
city. The second level will indicate the tourist attractions visited during the
tour.

Note that each tourist attraction has a country and city defined, so if we
do nothing, the user may enter for a city tour an attraction that is not in
the same country or city of the city tour.

Y

—EvCﬂyTour

CityTourld

P CityTourName

A

v
A
4

Countryld
CountryName
Cityld

CityName
Attraction

¥ Attractionid

¥ AttractionName
¥ AttractionPhoto

GeneXus

T’Country
CityTour - ? Countryld
| 5’“ CountryName
¢ CityTourld City
CityTourName ?
v Countryld W T Cityld
Cityld Y’ CityName
a A —
CityTourAttraction ~ CountryCity 2
‘ ¥ CityTourld | [¥ Countryld
¥ Attractionld ¥ Cityld
W ¥ CityName T4 Attraction
? Attractionld
A » P AttractionName
= A Countryld
[¥ Attractionld ¥ CountryName
AttractionName
2 Cityld
Categoryld IW
AttractionPhoto ¥ CityName
AttractionAddress & Categoryld
Countryld ¥ CategoryName
Cityld 901y

laa AttractionPhoto
® AttractionAddress

If we look at the table diagram, we can clearly see that we have two
different ways to get from the second level of CityTour to the cities table.
That is, in the extended table of CityTourAttraction there is the cities table,
CountryCity, but we get to it by two different ways, and starting from a
CityTourAttraction record, we are not sure if the city of the city tour
matches the city of the attraction.

To make sure that both paths match when inserting or modifying city
tours, the use of subtypes is not mandatory.

GeneXus

CityTour 2
¥ CityTourld
CityTourName
% Countryld w
'—1 CityTour Clyld
¥ cityTourld -~ A
(I; CityTourName CityTouAttraction CountryCity S
A Countryld ¥ CityTourld | ¥ Countryld
¥ Attractionld ¥ Cityld
¥ CountryName ! " ¥ ' CityName
& Cityld
¥ CityName A .
Attraction Attraction 2
? Attractionld 9 Attractionld
¥ AttractionName AttractionName
Categoryld
¥ AttractionPhoto AttractionPhoto
AttractionAddress
Countryld
Cityld
* CheckCountryCity * X
Rules * Rules *
= CheckCountryCity(CountryId, CityId, AttractionId); parm(in:&CityT tryld,in:& {,in:Attractionld,out:&Is0k);

We could, for example, invoke a procedure in the rules of the CityTour
transaction to which we send in a parameter the attributes Countryld,
Cityld and Attractionld, and what it will do is to check that the pair
Countryld, Cityld, which is clearly that of CityTour, matches the pair that is
found when accessing the Attraction record according to the attraction
that we want to add to the city tour.

Here we see that the procedure receives in variables the ID of the country
and city of the CityTour, and in an attribute the Attractionld of the line that
we want to check. And it will return a Boolean value that indicates whether
country and city match or not.

City Tour

[¢ CityTourld
CityTourName
¥ Countryld W
Cityld
» A
CountryCity

T4 CityTour
¥ cityTourid
p CityTourName CityTourAttraction - 2
& Countryld ¥ CityTourld ¥ Countryld
¥ Attractionld ¥ Cityld
¥ CountryName w ¥ ' CityName
A Cityld
¥ CityName A "™
Attraction Attraction 2
? Attractionld ¥ Attractionld
o AttractionName AttractionName
¥ AttractionPhoto AltractionPhoto parm(in:& Tou 1,in:&City
AltractionAddress out:&);
Countryld
Cityld
= CheckCountryCity * X
Source
Rules *
For each Attraction
k = CheckCountryCity(CountryId, Cityld, AttractionId); SAEETRCLION (T (c;:ntr‘yld
i = City

Error(Format("Please, choose attractions in the %1 city tour", CityName)) endfor

if not &isOk;

Then in the Source we access the table of the Attraction transaction and
in two new variables we load the country and city of the attraction
(through the automatic filter).

A Boolean variable returns True if the country received in a parameter
matches that of the attraction and also the city received in a parameter
matches that of the attraction. Otherwise, False is returned.

This is how in the transaction we condition the error rule to be triggered if
the procedure returned False.

GeneXus

,in:Attractionld,

1) AND

Tour Name

Country Id

Country Name China
City Id

City Name Beljing

Attraction

Id Name ion Photo

2 {; The Great Wall

9 Meet the Emperor

IBuA

Let's see this in GeneXus.

If we now run the transaction with a city tour that we had already loaded
and that runs through Beijing, with the two attractions that we see in
Beijing, and we want to add another one, which is not from Beijing, such
as the Eiffel Tower, we see how the error is being thrown correctly.

And if we add one from Beijing, such as the forbidden city, we can save
without any problem.

City Tour

¢ CityTourld
CityTourName
¥ Countryld W
Cityld
» A
CountryCity

T CityTour
¥ cityTourid
p CityTourName CityTourAttraction - 2
& Countryld ¥ CityTourld ¥ Countryld
¥ Attractionld ¥ Cityld
¥ CountryName w ¥ ' CityName
A Cityld
¥ CityName A "™
Attraction Attraction 2
? Attractionld ¥ Attractionld
o AttractionName AttractionName
Categoryld 2 2
¥ AttractionPhoto AttractionPhoto parm(in:&Cit Tour ntr ,in:&City
AltractionAddress out:&);
Countryld
Cityld
= CheckCountryCity * X
Source
Rules *
For each Attraction
k = CheckCountryCity(CountryId, Cityld, AttractionId); SAEETRCLION (f (c;:ntr‘yld
i = City

Error(Format("Please, choose attractions in the %1 city tour", CityName)) endfor

if not &isOk;

In this way, we did not have to use subtypes to ensure this check through
the transaction. Note, however, that we had to call a procedure to be able
to access the attraction's Countryld and Cityld attributes without
ambiguity, loading them manually into two variables, so that they are not
confused with those of the CityTour.

We will have this problem every time we are doing something with a
record of the CityTourAttraction table and we need to obtain the country -
city pair. Because the question is, which one? The CityTour pair or the
Attraction pair?

GeneXus

,in:Attractionld,

1) AND

171 - 100% + a0 o

Louvre Museum France

Eiffel Tower France

Forbidden oty China

Meet the Emperor China

ENAHE

For example, let's suppose we want to run through the table of the
Attraction level of CityTour and show the name of the attraction, its
country and city, and its photo. How do we know if it will take the
CountryName and CityName attributes from the Countryld and Cityld of
the Attraction table or if it will take them from those of the CityTour table?
There is an ambiguity here. It will take them from either of them. To find
out specifically which one it chose, we read the navigation list. The
navigation list indicates that from CityTourAttraction it will access
CityTour, just to bring the country and city ID, and Attraction to bring the
other attributes that we want to list, which are the photo and the name. In
short, we can see that it didn't choose to show the country and city of the
attraction, but the country and city of the CityTour.

In this case, this ambiguity doesn't matter because every time an
attraction is entered we check that these values match. And that is why in
the list it seems that we are looking at the country and city of the
attraction and not of the city tour.

However, as soon as we override that data check, for example, by going to
the Attraction transaction and changing the city of the Eiffel Tower to Nice
instead of Paris, we see that the list still shows Paris, because it is the one
of the CityTour where the Eiffel Tower is, and not the one of the attraction
itself. It allowed us to break our rule because it is defined only in the
CityTour transaction, and we made the change in Attraction, and even
opening the transaction does not cause the error because we are not
doing anything with the line.

Therefore, we clearly see that we would need to check everywhere this

data can be modified.

10

Louvre Museum

Eiffel Tower

The Great Wall

Forbidden city

Meet the Emperor

France

France

Paris

China

Beiing

China

Beijing

China

Beijing

HEHE

|
|

f.

CityTourAttraction -

["§ CityTourld
¥ Attractionld

GeneXus

CityTour 2
§ CityTourld |
CityTourName
Countryld W
Cityld
‘ ~
CountryCity

‘ ¥ Countryld
¢ Cityld
¥ CityName
A »
Attraction a

¥ Attractionld
AttractionName
Categoryld
AttractionPhoto
AttractionAddress
Countryld
Cityld

If we are sure that the check will be performed everywhere and therefore
the data on both paths will always match, then we may not care which
path is chosen to retrieve it. Although sometimes it does, for performance
reasons. In the example we saw of the list of attractions of the city tours,
having to access only Attraction to go to CountryCity and Country is more
efficient than having to go to Attraction to retrieve its name and photo
and then to CityTour to go to CountryCity and Country.

If we need to be able to indicate at a given moment one of the two paths,
because they are not the same, subtypes can be used.

We will analyze three possibilities, starting with two obvious ones and

ending with the least obvious one.

1

GeneXus

‘ Subtype Supertype
Chty o & 2\ AttractionCountryCity
¢ CityTourld ? AttractionCountryld Countryld
{9 cityTour g;zTWN"me " ® AttractionCountryName CountryName
v intryld
¥ cityrourid Cltyld'y § Attractioncityld cityld
P cityTourName ® AttractionCityName CityName
» A .
& Countryld CityT L = =
¥ CountryName [|
A Cityld ¥ CityTourld ¥ Countryld
¥ Attractionld 9 Cityld
¥ CityName ' v T —
* af CityNome 4 Attraction
Attraction
¥ Attractionid Y Attractionid
A ' 3 3
¥ AttractionName Attraction = {P AttractionName
¢ AttractionPhoto Sa AttractionCountryld
["9 Attractionid S
S¢ AttractionCountryld ! ' S¢ AttractionCountryName
AttractionName
Sa AttractionCityld
Sy AttractionCityld Categoryld
AttractionPhoto Sy AttractionCityName
AttractionAddress » Categoryld

AttractionCountryld
AttractionCityld

¥ CategoryName

lad| AttractionPhoto
¢ AttractionAddress

Error(Format("Please, choose attractions in the %1 city tour", CityName))

if Countryld
Cityld <>

<> AttractionCountryId or
AttractionCityId;

The first will be to modify the name of the country-city attributes in this
path, in order to be able to identify it.

Thus, we define a group of subtypes for the country and city of attraction.

Note that this group has two primary attributes: AttractionCountryld and
AttractionCityld, which correspond to the primary key of the CountryCity
table, according to the supertypes indicated: {Countryld, Cityld}.

And that we replaced the supertypes with these subtypes in the Attraction
transaction.

Thus, we see that the path below can now be identified.

We could even add to the CityTour transaction the country and city
attributes inferred through Attractionld, in order to implement the check
directly through the error rule.

12

Xus Trial

K

Associsted Tobles
#53 CityTour_DetaProvider

City TourAttraction

Models\GX17Triak3iSubtypes

iew Layout Insert Build Knowledge Manager Window Tools Test Help
’ Release
A AttactionCountryCity X _» ListActiveAttractions X [™] Impoct Analysis X %55 CityTour DstoProvider X [] NavigationView X 3 Attraction_DatsProvider® X O Properies
Source * 2| ¥ | Fitter
AttractionCollection =1
{ —
Attraction =]
{
AttractionName “Louvre Museum®
RttractionCountryld = find(Countryld, CountryName = “France™)
Categoryld = find(Categoryld, CategoryName = "Museusm")
Attracionfityld = find(Cityld, CityName = "Paris™)
AttractionPhoto = Louvre.Link()
}
Attraction
{
AttractionName = “The Great Wall"
Countryld = find(Countryld, CountryName = "China")
Categoryld ind(Categoryld, CategoryName = “Tourist site")
Cityld find(Cityld, CityName = "Beijing")
AttractionPhoto = Great_Wall.Link()
}
Attraction
{
AttractionName = “"Eiffel Tower”
Countryld = find(Countryld, CountryName = “Fra
Categoryld = find(Categoryld, CategoryName = %)
Cityld = find(CityId, CityName = “Paris")
AttractionPhoto = Eiffel.Link()
Attraction
{
AttractionName = “"Christ the Redemmer” a4
Output 9 X
+ Autoscroll
§ o
y. (Data Provider 'Attraction DataProvider’' Events, Line: 6, Det: o\ c
Data Provider 'Attraction DataProvider' Events, Line: 8, Detail: | o4
Al
i ©|Prop T Toobex
Ln Col 20

Note that after making these changes it is easy to remove the ambiguity
from the list we had before. It is enough to change here CountryName and
CityName for the subtypes.

However, since we already had data in the tables, it indicates that it should
reorganize, in particular, the Attraction table. It must place the new
attributes - the subtypes - and delete the old ones - the supertypes. And
it seems that it will correctly transfer the data from the old attribute, the
supertype, to the new one, the subtype.

However, when reorganizing after completing the specification we find
errors. In particular, it indicates that in the DataProvider to populate the
table with attractions, a Data Provider that we had before, the attribute
Countryld is being used, but it is no longer in Attraction. The same goes
for Cityld. Here we clearly see a disadvantage of this solution. We will have
to replace one by one the old attributes with the new ones in all the
objects that already had access to the Attraction table before.

In fact, if we had already been doing development work on the application
where CityTour was not considered, we had not yet encountered any
ambiguity problem, so presumably we already had many other objects
working on Countryld and Cityld in Attraction.

If we choose this solution, we will have to solve all these pitfalls.

Leaving that aside, if we now look at the navigation list of the list we were
interested in, we now see that to get country and city for each

13

CityTourAttraction record, it is doing it through the Attraction table, as we wanted. We
removed the ambiguity and explicitly chose the path we wanted.

13

GeneXus

2
IT‘Country
CityTour 2 ¥ countryid
Q CountryName
¢ CityTourld
CityTourName City
¥ Countryld w ¥ ctyid
CityTour Cityld Q Ot
? CityTourld
P CityTourName GityT ot A -
A Countryld = | Y
¥ CountryName ¥ CityTourld ¥ Countryld
A Cityid ¥ Attractionld ¥ Cityld
& * ¥|__ CityNome T9) Attraction
¥ CityName L
Attraction ? Attractionld
A » P AttractionName
? Attractionld Attraction 2
¥ AttractionName | 5 ¥ & Countryld
ttraction! ¥ CountryName
¥ AttractionPhoto AttractionNeme iy
Categoryld
AttractionPhoto ¥ CityName
AttractionAddress & Categoryld
Countryld
¥ CategoryName
Cityld goryl

laa AttractionPhoto
® AttractionAddress

Now let's think of another alternative that is less complicated in relation to
objects that already existed.

This second solution removes the ambiguity by modifying the name of the
country-city attributes in this other path.

14

GeneXus

Subtype Supertype 2
2\ CityTourCountryCity
? CityTourCountryld Countryld

® CityTourCountryName CountryName CityTour = &3] Country

? cityrourcityid Cityld :? Countryld
® CityTourCityName CityName ¢ CityTourld y’ CountryName
CityTourName City
¥ CityTourCountryld W 9 ciyid
CityTourCityld 0o
_l-CltyTour)y’ CityName
» A
CountryCity

? CityTourld . E
O CityTourAttraction 2 R
Yy’ CityTourName
Sa CityTourCountryld [§ CityTourld ¥ Countryld
Sy¢ CityTourCountryName { Attractionld ¥ Cityld
* ¥ __ CityNeme T3 Attraction
Sa CityTourCityld i
S¢ CityTourCityName (?\ Attractionld
Attraction Att ‘[» - Y’ AttractionName
¥ Attractionid | 2 Countryld
¥ AttractionName § Attractionld ¥ CountryName
AttractionName A Cityid
¥ AttractionPhoto Categoryld ty
AttractionPhoto ¥ CityName
AttractionAddress & Categoryld
Countryld
¥ CategoryName
Cityld goryl

laa AttractionPhoto
® AttractionAddress

To do this we define the subtype group for country and city using them
directly in the CityTour transaction header. The result is this change in the
CityTour table (from supertypes to subtypes).

The difference between this solution and the previous one is that it is less
likely that the flat transaction was built first, without the second level -
which is the one that introduces the two paths to CountryCity. So it is not
to be expected that there were other objects navigating CityTour before
we thought of adding the second level, and then having to change
attributes for subtypes in the first one.

In other words, it is to be expected that the CityTour and
CityTourAttraction tables are created at the same time, instead of creating
CityTour first, loading data to it and only later realizing that we will also
need a second level (which is the one that generates the two paths and
this solution).

With this solution we can see that the path above is now identifiable, so
that...

15

Subtype

Supertype

GeneXus

2
2\ CityTourCountryCity
? CityTourCountryld Countryld — .
® CityTourCountryName CountryName CityTour o 4 Country
? cityrourcityid Cityld 2 ¥ countryid
® CityTourCityName CityName ¢ CityTourld P CountryName
CityTourName City
¥ CityTourCountryld W ? ciy
: CityTourCityld B
9 CityTour ityName
CityTourld ' A
? CityTourAttraction CountryCity 2
p CityTourName
Sa CityTourCountryld [CityTourld ["9 Countryld
Sy CityTourCountryName ¥ Attractionid " o Y g"“z'&me a2
Sa CityTourCityld £4) Attraction
Sy CityTourCityName ? Attractionld
Attraction Att ‘I' » p AttractionName
¥ Attractionid , A Countryld
¥ AttractionName Y ﬁ:::cct'z:lrfame ¥ CountryName
N
¥ AttractionPhoto Categoryld 2 Cityld
¥) Countryld AttractionPhoto ¥ CityName
¥) Cityld AttractionAddress 2 Categoryld
go‘;a;':vyld ¥ CategoryName
i

laa AttractionPhoto

Error(Format("Please, choose attractions in the %1 city tour", CityTourCityName)) ® AttractionAddress

if CityTourCountryId <> Countryld or
CityTourCityId <> CityId;

..for example, we can now implement the match check directly through
the error rule, with no need for the procedure.

To do so, we must add Countryld and Cityld to the structure, in order to
use them in the rule. Note that we are clearly told that they are being
inferred from Attractionid.

16

4 Country X [T§ Atmction X [§ CtyTowr X J, CityTourCountryCity X .» ListActiveAttractions X [T Navigation View X
Pattern
OB ListActveAuactons) Procedure ListActiveAttractions Navigation Report

Now we have, then, this solution implemented in GeneXus; clearly if in the
list we were analyzing we leave the supertypes CountryName and
CityName, they will be taken from Countryld and Cityld of the Attraction
table. And no longer through the other path, that of CityTour. Let's
confirm this in the navigation list. It shows what we expected. There is no
longer any ambiguity here.

i

—_—
3 CityTour

? CityTourld
p CityTourName
Countryld
CountryName
Cityld

CityName
Attraction

? Attractionld

¥ AttractionName

K %R %

¥ AttractionPhoto

GeneXus

I-$‘<:ountry
CityTour 2 ? Countryld
0
7 CountryName
9 CityTourld r &
CityTourName City
¥ Countryld w ¥ ctyid
Cityld p» CityName
a A
CityTourAttraction ~ CountryCity
‘ ¥ CityTourld | [¥ Countryld
¥ Attractionld ¥ Cityld
W ¥ CityName T4 Attraction
? Attractionld
A » P AttractionName
Attraction 2
& Countryld
[¥ Attractionld ¥ CountryName
AttractionName
2 Cityld
Categoryld IW
AttractionPhoto ¥ CityName
AttractionAddress & Categoryld
Countryld ¥ CategoryName
Cityld 901y

laa AttractionPhoto
® AttractionAddress

We now come to the last alternative with subtypes, which at first seems
less intuitive, but has a great advantage: it provides disambiguation in the
table itself in which the ambiguity occurs. That is to say, the table that
originates the two paths.

If we think about the previous solutions, we are changing the names of the

Country and City attributes in tables that, when looking at their extended
table, have no ambiguity.

18

."—!avayTour

? CityTourld

P cityTourName

2 Countryld

¥ CountryName

A Cityld

¥ CityName
Attraction
¥ Atractionid
¥ AttractionName
¥ AttractionPhoto
Sy AttractionCountryld
Sy AttractionCityld

CityTour 2

¢ CityTourld
City TourName
v Countryld
Cityld

A
CityTourAttraction -

| § CityTourld

¥ Attractionld

A »
Attraction 2
¥ Attractionld
AttractionName
Categoryld
AttractionPhoto
AttractionAddress
AttractionCountryld
AttractionCityld

v

A
CountryCity
¥ Countryld

¢ Cityld
CityName

GeneXus

Subtype Supertype
2\ AttractionCountryCity

¥ AttractionCountryld Countryld
® AttractionCountryName CountryName

? AttractionCityld Cityld

® AttractionCityName CityName
—
4 Attraction

Y Attractionid

P AttractionName

Sa AttractionCountryld
Sy AttractionCountryName
Sa AttractionCityld

Sy AttractionCityName

& Categoryld

« CategoryName

laa| AttractionPhoto

® AttractionAddress

So, if we look at solution 1, and we think, for example, that we want to
develop a Web Panel that shows the tourist attractions with their country
and city information, we do not understand why there are subtypes in that
table instead of supertypes. Looking from Attraction there is no need to
define them.

19

GeneXus

Subtype Supertype 2
L CityTourCountryCity

? CityTourCountryld

¢ CityTourCountryName CountryName

Countryld

_,' Country

CityTour 2
? CityTourCityld Cityld ? Countryld
® CityTourCityName CityName ¥ CityTourld | ?‘ CountryName
City TourName C
¥ CityTourCountryld W Ry
CityTourCityld ? Cityld
¥’ CityName
p— ~ A
4 CityTour CityTowAttmction ~ CountryCity 2
CityTourld ! e | |
? p ¥ CityTourld ¥ Countryld
P CityTourame ¢ Attractionld ¥ Cityid
Sa CityTourCountryld L ¥ CityName T30 Attraction
Sy CityTourCountryName ¥ Attractionid
Sa CityTourCityld A ~ P AttractionName
Sy CityTourCityName Atraction S & Countryld
Attraction [¥ Attractionld | ¥ CountryName
? Attractionld AttractionName A Cityld
¥ AttractionName Categoryld
S o AttractionPhoto = Chytlome
AttractionPhoto AttractionAddress & Categoryld
Countryld ¥ CategoryName
Cityld

laa AttractionPhoto
® AttractionAddress

The same is true if we consider solution 2 and stand on CityTour.

If we wanted to list the city tours with their country and city, positioned on
that base table, we would not understand, either, why subtypes are being
used. Although in this case, as the CityTourAttraction table comes from a
second level of the transaction that generates the CityTour table, they are
more closely related and the rationale for having these subtypes can be
seen more clearly.

20

—_—
§ CityTour

? CityTourld
p CityTourName
& Countryld
¥ CountryName
2 Cityld
¥ CityName
Attraction
? Attractionld
¥ AttractionName
¥ AttractionPhoto

CityTour 2
¢ CityTourld
CityTourName
v Countryld w
Cityld
L A
CityTourAttraction CountryCity
3 ‘ ¥ CityTourld | ["§ Countryld
¥ Attractionld ¥ Cityld
¥ ¥ CityName
A »
Attraction 2
| § Attractionld
AttractionName
Categoryld

AttractionPhoto
AttractionAddress
Countryld

Cityld

GeneXus

_(' Country

? Countryld
?‘ CountryName
City
¥ cty.
) CityName

—
1l Attraction

¥ Attractionid
Q AttractionName
& Countryld

¥ CountryName
& Cityld

¥ CityName
& Categoryld

¥ CategoryName

laa AttractionPhoto

® AttractionAddress

To perform a disambiguation in the table that causes the two paths seems
to be an advantage. At least in the sense that ambiguity is inherent to this

table, so it will never be unjustified for a subtype to appear there.

Now, how do we perform disambiguation in the table that makes those
two paths appear? In the example, in the CityTourAttraction table itself.

21

GeneXus

—;'CIWTOUI’

? CityTourld

‘;7 CityTourName

& Countryld

¥ CountryName

2 Cityld

¥ CityName
Attraction
. CityTourAttractionid
Sy CityTourAttractionName
Sy CityTourAttractionPhoto

Subtype

A CityTourAttraction

? CityTourAttractionid

CityTourAttractionName
CityTourAttractionPhoto
CityTourAttractionCountryld
CityTourAttractionCountryName
CityTourAttractionCityld
CityTourAttractionCityName

»
City TourAttraction

3 ¥ CityTourld
¥ CityTourAttractionld

Supertype
=

Attractionld

AttractionName

AttractionPhoto

Countryld

CountryName

Cityld

CityName

CityTour 2

| CityTourld

City TourName
Countryld W
Cityld

‘ ~
CountryCity
[¥ Countryld

¥ Cityld
¥ CityName

A »

Attraction 2

|9 Attractionld

AttractionName
Categoryld
AttractionPhoto
AttractionAddress
Countryld

Cityld

».

T4 Country

? Countryld
?‘ CountryName
City
¥ cty.
y CityName

-
{l Attraction

¥ Attractionid
p AttractionName
& Countryld

¥ CountryName

& Cityld

¥ CityName

& Categoryld

¥ CategoryName
laa AttractionPhoto

® AttractionAddress

What if we define a group of subtypes that allow us to modify the name of
Attractionld when it appears as a foreign key, and all the attributes that are
inferred from it and are of interest to us?

And then in CityTour instead of using the Attractionld attribute, we use
that subtype? And, of course, we must now infer attraction name and
photo also in subtypes of that group.

By doing this, the table diagram becomes like this. Note that the other
tables should not be modified at all, so that all objects that were previously
working on these other tables will continue to do so without any problem.

22

Error(Format("Please, choose attractions in the %1 city tour", CityName))

if Countryld <> CityTourAttractionCountryId or
CityId <> CityTourAttractionCityId;

—1- CityTour CityTour

¥ CityName
Attraction CityTourAttraction 2 | e
. CityTourAttractionid - e | 3 g:;'":'y'd
Sy CityTourAttractionName 3 3 C::Tguumnmchonl d v CityName
Sy CityTourAttractionPhoto w
Sy CityTourAttractionCountryld a &«
Sy CityTourAttractionCityld \ Attraction 2
v |9 Attractionid
Subtype Supertype " AttractionName
A\ CtyTourAttraction | Mss ?‘W'gw
CityTourAttractionld Attractionid s ttraction: o
? CI:TOUT;\HIM Attract AmcHonsdBess
Countryld
* CityTourAttractionPhoto AttractionPhoto Cityld
® CityTourAttractionCountryld Countryld
* CityTourAttractionCountryName CountryName
& CityTourAttractionCityld Cityld
® CityTourAttractionCityName CityName

¥ cityTourld . = 1
Q CityTourName ¢ CityTourld
City TourName
& Countryld < Countryld W
¥ CountryName Cityld
2 Cityld
A —
'S CountryCity 2

GeneXus

&4 Country
? Countryld
P CountryName
City
? Cityld
Q CityName

T30 Attraction
¥ Attractionid
P AttractionName
& Countryld
¥ CountryName
A Cityld
¥ CityName
& Categoryld
¥ CategoryName
laa AttractionPhoto
® AttractionAddress

If now we would like to check that the country and city of the city tour are
identical to the country and city of the attraction, it is enough to add to the

transaction structure the two inferred

attributes

CityTourAttractionCountryld and CityTourAttractionCityld, and write the

error rule as we see it.

23

T3 County X [Atmction X [F§ CityTour X J, CityTowrAttraction X ,* ListActiveAttractions X [Navigation View X
Pattern
O] ListActive Atractions) Procedure ListActiveAttractions Navigation Report

With this solution, the list we wanted to disambiguate from the beginning
is very clear.

We run through the Attraction level of the CityTour transaction with a For
each. And here we have to modify the attributes, which are all inferred
from the attraction, but now it is no longer Attractionld, but its subtype.
We change, then, all the attributes for their subtypes. In particular, the
country name, and the city name. But when we look at the navigation list,
it says that precisely these two attributes cannot be reached.

Why? Because while we have these two subtypes defined within the
group, we have not specified them at the level of the transaction we are
running through with the For each. If we now add them -which will have
no negative effect since they are inferred-, and have the list navigated
again, we find that there is no longer any problem.

And in fact, we see how it is retrieving the information correctly, from the
subtype in the navigated table, accessing the Attraction table and from
there CountryCity and Country.

However, having to add every time all the inferred information that you

want to use in any navigation to the transaction structure can be a bit
annoying.

24

City Tour 2 CityTour 2
¥ CityTourld ¥ CityTourld
City TourName City TourName
¥ Countryld L4 w Countryld w
Cityld Cayld
» A A
CityTowAttrction - CountryCaty > CountryCity
CityTourAttraction 2
¥ CityTourld ¥ Countryld ™ ¥ Countryld
¥ Attractionld ¥ Ctyld ¥ CityTourld ¥ Cayld
w ¥ CityNome 2 ? CtyTowAttctionid | ¥ CityNeme
A »
Altracton 2 m‘ = 2
¥ Attractionid = ¥ Attractionid
T 2
AttractionName b AttractionName
Categoryld ¥ CityTourld Categoryld
::y«::‘;zo CityTourName AttractionPhoto
roct ess AttractionAddress
¥ CityTouCountryld MW ot
AttractionCountryld City TourCityld Countryld
AttractionCityld Cityld
-~ A
CityTouAltmction - CountryCity
¢ CayTourd ¥ Countryld
¥ Attractionld ¥ Catyld
w ¥ CityNeme
A »
Attroction 2
¥ Attractionid
AttractionName
Categoryld
AttractionPhoto
AttractionAddress
Countryld

Cityld

Lastly, every solution has its pros and cons and this depends on the
particular case to which it is being applied.

For example, if all transactions are created together, then the problem of
having other objects using the old attributes from before disappears, and
options 1 and 2 are no longer problematic in that sense. However, they do
not in themselves justify the use of subtypes.

In this case it doesn't seem too much of a problem, because, for solution 1,
while standing in Attraction it is enough to look at the directly
superordinate table to find out why. And the same can be said about
solution 2, while positioned on CityTour.

25

Table

GeneXus

Table /_\
Table /\

"""" CityTour 2
¥ CityTourld
CityTourName
ityTourCountryld M.
iCityld
‘ -
CountryCity 2
|9 Countryld
¥ Cityld
¥ CityName
. N
Attraction 2

Table Table |
¥ Attractionld

AttractionName

Categoryld

AttractionPhoto

AttractionAddress
AttractionCountryld
AttractionCityld

But, if in solution 1 we are positioned on Attraction and there we define
subtypes for Countryld and Cityld, and the table that causes the path
ambiguity is far away, then it gets a bit more confusing.

Or if, for solution 2, we are positioned on CityTour, the same happens. It is
no longer so easy to understand what these subtypes are doing there.

On the other hand, if subtypes are created in the table with the ambiguity,
defining one of the foreign keys as a subtype, it is very clear. It is enough
to look at its extended table to find the table that can be reached through
several paths.

26

CityTour 2 CityTour 2
¥ CityTourld ¥ CityTourld
City TourName City TowrName
¥ Countryld L4 w Countryld w
Cityld Cayld
» A A
CityTowAttrction - CountryCaty > CountryCity
CityTourAttraction 2
¥ CityTourld ¥ Countryld i ¥ Countryld
¥ Attractionld ¥ Ctyld ¥ CityTourld ¥ Cayld
w ¥ CityNeme 2 ¢ CityTourAttractionld " ¥ CtyNeme
A » A
Attraction 2 Attracton = 2
¥ Attractionid ¥ Attractionid
CityTour 2
AttractionName % AttractionName
Categoryld § CityTourld Categoryld
::voc::::o CityTourName AttractionPhoto
roct ess AttractionAddress
¥ CityTouCountryld MW o
AttractionCountryld City TourCityld Countryld
AttractionCityld Cityld
-~ A
CityTouAltmction - CountryCity
¥ CityTourld ¥ Countryld
¥ Attractionld ¥ Cayld
w ¥ CityNeme
A »
Attroction 2
¥ Attractionid
AttractionName
Categoryld
AttractionPhoto
AttractionAddress
Countryld

Cityld

This is the third solution. The disadvantage of this solution is that in any
object where we must use attributes that are obtained from the foreign
key subtype, we must add them, of course, to the subtype group. There
they will be marked as inferred, but in addition, we must add them to the
transaction structure.

And, of course, it is not clear at first glance that the ambiguity is made by
Country and City. If we don't analyze the extended table we don't know by
which of the attributes of the subtype group it was defined. It could have
been by Categoryld, for example.

Here we have presented these three solutions. The developer will choose
the most suitable one according to his/her reality.

27

RECURSIVE SUBTYPES

D

Now let's look at another use case of subtypes, which we call recursive
subtypes, where we have an entity that must be self-referential.

28

GeneXus

Recursive Subtypes

FARTEAA

To study this case, let's suppose we are representing the information of
the travel agency employees. Each employee may, in turn, be a manager
of one or more other employees.

29

GeneXus

Recursive Subtypes

EMPLOYEE
TABLE

Of all employees who have a manager, it is necessary to indicate who that
manager is.

This manager is, in particular, an employee. Therefore, a relationship is
established in the employee table with itself.

30

Recursive Subtypes

Name Type Nullable
- [55 Employee Employee Employee 2
? Employeeld Id N
P EmployeeName Name No ? Employeeld
® EmployeeLastName Name No EmployeeName
® EmployeelsManager Boolean No E
mployeelLastName

§ ™ Sa EmployeeManagerid id Yes E ploy IsM r
S¢ EmployeeManagerName Name Employeeh: anag|ed FK
Sy EmployeeManagerLastName Name mployeellanager

Subtype Description Supertype
= A EmployeeManager
? EmployeeManagerld Employee Manager Id Employeeld
® EmployeeManagerName Employee Manager Name EmployeeName
® EmployeeManagerLastName Employee Manager Last Name EmployeelastName

To solve this, we must create a subtype group that represents the
information of the employee's manager.

The EmployeeManagerld attribute will be, for all purposes, taken as an

Employeeld, and for this reason, it will form a foreign key to the Employee
table itself.

31

Recursive Subtypes

Id 10
Name: Gary
Name Type Nullable Last Name: Collins
TEmployee Employee Is manager?
¥ Employeeld Id N Manager Id: 2 v
(P EmployeeName Name No
® EmployeeLastName Name No
® EmployeelsManager Boolean No
s Sa employeeManagerld I Yes

Sy¢ EmployeeManagerName
S¢ EmployeeManagerLastName Name {

Employeels Employee

Employeeld EmployeeName EmployeelLastName Manager Managerld

So, when entering the information of an employee through the
transaction, when the user chooses a value for the EmployeeManagerld
field, GeneXus will check the referential integrity; that is, it will check that
there is a record in the employee table with that value for the Employeeld
attribute.

We encourage you to think of real situations in which it is necessary to use
the different use cases of subtypes we have seen and to carry out the
implementation in GeneXus.

32

GeneXus

training.genexus.com
wiki.genexus.com

training.genexus.com/certifications

33

