
More about nested For Each

Cases and navigation

When there are nested For Each commands, GeneXus must first
determine the base tables of each one of them.

When the developer indicates the Base Transaction, it is done right away.
Otherwise, GeneXus has to determine each base table according to the
attributes included in every For Each command. This case is more
complex and will not be addressed in this video.

Next, GeneXus defines the necessary navigation to solve the multiple
query. One of three options will be applied:

-Join
-Cartesian product
-Control break

Nested For Each

As we have said, the first thing GeneXus does when it finds a couple of
nested For Each commands is determine the base table of each one of them,
in an ordered manner and from the outside in, starting from the outermost
one. Only then it determines how navigation will take place.

In every For Each command, the indicated base transaction and only the
attributes that belong to this For Each command come into play: from the
Order, Where, etc. as well as those in its body, except for those included in a
nested For Each command. That is to say, removing the nested For Each
command, the base table is determined as in a simple For Each command.
The attributes of the When none clause are never taken into account. All
attributes must belong to the extended table of the base table found, which
matches the base table associated with the base transaction. The attributes
that don't meet this condition will not be because they can't be
reached.

2

Nested For Each

In the example, it is done in this order:

1) The base table of the external For Each command is determined. To this
end, the indicated base transaction is considered; that is to say, Country.City,
and it is checked whether the attributes included in the printblock
(CountryName and CityName) belong to its extended table. Otherwise, a
warning is displayed in the navigation list to inform the user that some
attributes cannot be instantiated, because they can't be reached from the
extended table of that For Each command. In this case, CountryName and
CityName belong to the extended table of CountryCity, the base table of the
For Each command.

2) The base table of the nested For Each command is determined. The
Attraction base transaction is considered, as well as the AttractionName
attribute included in the printblock. If a base transaction hadn't been written,
something related to the external For Each command attributes would be
considered to determine the base table of the internal For Each command, but
this is not the case. Thus, its base table is determined as if it was a standalone
For Each command. Therefore, its base table will be Attraction.

3

Different Base Table

CategoryId CategoryName

1 Museum

2 Monument

3 Tourist site

AttractionId AttractionName CountryId CityId CategoryId

1 Louvre Museum 2 1 1

2 The Great Wall 3 1 3

3 Eiffel Tower 2 1 2

4 Forbidden city 3 1 3

5
Christ the

Redemmer
1 2 2

External For each Nested For
each

Join

Table Category

Table Attraction

Nested For Each

The three examples of nested For Each commands that seen before
are based on the determination of base tables. Now we will examine them
more closely.

When the base tables are different, there are two possibilities: whether or not
there is a direct or indirect 1 to N relationship between them. In the first case,
for each record of the main For Each, the nested For Each will run its
instructions only for the N associated records. The operation that cuts the
data from a table by that of another one is known as a Join.

4

Different Base Table

AttractionId AttractionName CountryId CityId CategoryId

1 Louvre Museum 2 1 1

2 The Great Wall 3 1 3

3 Eiffel Tower 2 1 2

4 Forbidden city 3 1 3

5
Christ the

Redemmer
1 2 2

AirportI
d

AirportName CountryId

1 Guarulhos 2

2 Charles de Gaulle 1

3 Tegel 3

External For each Nested For
each

Cartesian product

Table Attraction

Table Airport

Nested For Each

In the second case, when there is no relationship, for each record considered in
the main For Each, the nested For Each will run its instructions for all the
records of the other table because it has found no relationship between them.
This operation is known as Cartesian Product.

5

Equal Base Table

Control break
AttractionId AttractionName CountryId CityId CategoryId

1 Louvre Museum 2 1 1

6
The Centre
Pompidou

2 1 1

7 Quai Branly 2 1 1

3 Eiffel Tower 2 1 2

5 Christ the Redemmer 1 2 2

2 The Great Wall 3 1 3

4 Forbidden city 3 1 3

Table Attraction

Nested For Each

When the base tables are the same, an operation known as Control Break
is performed: it takes place when we need to group the data from a table,
run certain instructions that consider the common data and run
through each member, and then run other instructions to move on to the
next group and repeat the process. In this case we must indicate the
attributes that make up the group using the order clause.

This case occurs because the same base transaction was specified for the
external For Each command and for the nested one.
If the base transactions of the For Each commands have not been
specified, as we said, GeneXus will calculate them from the attributes it
finds within those For Each commands. But it will only infer that you want
to implement a control break if the base tables found by it are the same.
We will not go into details about it in this course.

Let's look at this other case.

6

Different Base Table

External For each Nested For
each

Control break

Nested For Each

Note that here the second For Each command would be unnecessary,
because for every attraction selected at a given moment in the external
For Each command, there is only one related CountryCity record. So, this
would be the same as not writing the second For Each command, and
sending to print the CountryCity printblock that contains CountryName
and CityName, which both belong to the Attraction extended table.

7

Direct 1 - N

Indirect 1 - N

1

2

Nested For Each

examine these two cases of 1 to N relationship between the For Each
commands, and therefore, of JOIN.

The first one is direct. Note that the base tables of the external and nested
For Each are CountryCity and Attraction, respectively; they are related by a
1 to N relationship.

The name of the country and city will be printed, and for each pair, their
attraction names.

The second is indirect. The base tables of the external and nested For Each
are Country and Attraction. If we look closely, each country has N cities,
each one with N attractions. The base tables of the For Each commands do
not have a direct 1 to N relationship, but they do have an indirect one,
through the CountryCity table. In other words, note that the base table of
the first For Each, Country, is included in the extended table of the base
table of the nested For Each: Attraction. Then a join will be made.

8

Direct 1 - N

Indirect 1 - N

Nested For Each

Let's look at the navigation lists. For the nested For Each, which in both
cases navigates Attraction, the entire table is not run through. Note that in
the first case, where the relationship is direct, the at sign (@) indicates
that it will be filtered by the composite foreign key that establishes the
relationship, CountryId and CityId. In the second case, we see that it will
be only by CountryId, which is part of the composite foreign key.

Note that in both cases instead of ordering the navigation by the primary
key of Attraction, which is AttractionId, it does so by the relation attribute
or set of attributes. To do so, it has an index automatically created by
foreign key. In this way, the database access will be optimized.

Therefore, after determining that it will make a Join, GeneXus tries to
optimize its navigation.

9

Join

Indirect 1 - N

Nested For Each

Here is a third example. In this case, suppliers have been added that offer
tourist attractions, and therefore two more tables appear: Supplier and its
subordinate, SupplierAttraction.
In addition, we have the airports, which belong to a country and city.
Then if we look at the For Each, we see that the base table of the external
For Each is SupplierAttraction and the base table of the nested For Each is
Airport. Let's assume for this example that the printblock info shows the
name of the supplier, the name of the attraction and the date on which
that attraction will be shown, and the second printblock shows the name
of the airport.

Note that there is an indirect 1 to N relationship. That is to say, for every
SupplierAttraction record, there will be only one Attraction record, given
that we obtain only one from CountryCity, which in turn is related to N
records of Airport (the N airports found in that country/city, even though,
in general, there is actually only one. In this model there may be several).

Here GeneXus finds attributes in common between the extended table of
the main For Each command and the base table of the nested For Each
command. Which ones? The pair {CountryId, CityId}. It will make the Join
through them.

For optimization reasons, we can see that it chooses the index by foreign
key of the Airport table. In short, this is a case where the relationship
between the base tables is not directly 1 to N, but indirect, through
intermediary tables.

10

Cartesian product

Nested For Each

Let's see now this case of nested For Each commands, with different and
unrelated base tables.

Here the first for each navigates Category, while the nested one navigates
CountryCity. In this case, there is no 1 to N relationship of any kind,
contrary to what it might seem. Looking at the table diagram, we see that
a Category has N attractions, each of which has one and only one
CountryCity. One would think that for each category, the CountryCity of
each of its attractions would be listed. That would be true if the base table
of the nested For Each were Attraction. But it is not, it is CountryCity. So
GeneXus understands that we are not looking for the records related by
attraction. If we were looking for those, it would be enough to specify
Attraction as the base transaction for the second For Each. This can be a
misleading case, so it is essential to read the navigation list carefully to
avoid confusion. In the listing we can clearly see that no join is being
made.

In this case, GeneXus find a direct or indirect 1-N relationship
between the tables; therefore, it apply implicit filters to the nested
For Each records. That is to say, it makes a Cartesian Product between the
tables: for each base table record of the external For Each (Category), it
considers all records of the nested For Each base table (CountryCity).

11

Control Break

Control Break

Nested For Each

In this case we want to list all countries; for each one of them we want to
list their cities, and for each city we want to list their attractions. The only
restriction is that we want to do it only for the countries and cities that have
tourist attractions recorded.

That is to say, we will have to implement a double control break, in which
first we group by country, and within it we will then group by city. Within
the latter group, we will show the names of all attractions. To do so, we will:

Define the grouping criteria using order clauses. Remember that the order
is very important in a control break; it not only indicates the attribute or
attributes used to list data, but also sets how to group it.

We could indicate an order for the innermost For Each, but this order will
only be used in the conventional manner. That is, it will be used only for
ordering purposes. We'll see this soon.

12

Control Break

Control Break

We have a double control break, which implies three For Each Commands
If we look at the navigation list, we can see the word Break for every
internal For Each, indicating the same base table, Attraction, and therefore,
a control break.

In addition, it will run through this base table only once. To do so, it needs
to order by the concatenation of the attributes included in the orders of the
For Each commands. why it chooses CountryName, CityName.

Note that in the second For Each, the break is performed by country,
iterating on the country it is positioned in the first For Each. In the third For
Each, the break is performed by country and city, iterating on the city it is
positioned in the second For Each.

Here we see an example of how it would be displayed if this were the data.
First we see the country, and for it we see the first of its cities according to
its name, and the tourist attractions of that country and city. Then we see
the next city of the same country, and its attractions, and only when there
are no more cities of that country, the next one is shown, in alphabetical
order, and it starts all over again. Country, city, attractions.

Think about how the previous list will be executed if instead of ordering the
first For Each by CountryName and the second by CityName, we would
have sorted both or just the first one by the pair CountryName, CityName.

Note that in this case the navigation list will be different from the one
shown above, in the second For Each. There, Loop while will read
CountryName = @CountryName and CityName = @CityName .

13

This means that at runtime, now the same information will be seen in this other
way. That is, the country comes out... its first city... and its tourist attractions.
Then, the same country and its second city... and its tourist attractions, and so
on until the country changes and the same thing happens again for the next
one.
Clearly the information is being presented differently just by having placed
CityName in the first or in the second For Each.

14

Now let's suppose that in the first example, in which the break is made by
country and then by city, to then list the attractions, we add to the last For
Each, the innermost one, an order by AttractionName. That is to say, we will
want the attractions of a country and city to be ordered by attraction name.

The navigation list will change, and AttractionName will be added to the order
of the three For Each commands, leaving CountryName, CityName and
AttractionName.

And if we run with this change, we see exactly what we were saying: the break
is being made by country name, and that is why France comes out first and
Italy much later. Within France, the break is made by CityName, and that is
why Nice, which is alphabetically before Paris, comes out first; within each of
these subgroups, the attractions are ordered alphabetically:

This is contrary to what happened in the first case, when we did not have the
order by AttractionName in the last For Each.

15

As we have seen, the break criteria are in Navigation Filters. Here we are
giving these instructions: order the run by the set CountryName, CityName,
AttractionName and execute the body of the first For Each, where only the
CountryName is printed. Next, execute the second For Each, which, as long
as the CountryName does not change, must print the printblock that contains
only CityName, but then immediately execute the internal For Each, where as
long as the countryName cityName cityName pair does not change, it must
print the AttractionName.

That is to say, we can see that the filters remain exactly the same as when we
didn't order the innermost For Each by AttractionName, so, as we said, this
order that we have just entered is only useful for sorting, and not for making a
break.

16

Case Study

Transaction Design

Source

In a previous video we analyzed a case study to determine how GeneXus
applies filters when they are received as an attribute in the Parm rule.

Going back to that same case, we will see how to prevent that filter from
being applied.

We then start from the design of transactions design that is displayed, and
we needed to obtain a list showing, for a given client, and from a given date,
all the tours he has booked, and for each of them the contact phone
numbers of the tour guide in charge.

To achieve this, the source shown is proposed.

17

Case Study

Knowing that the base table of the external For Each command is
RESERVATIONTRIP, and that the base table of the internal For Each
command is TOURISTGUIDEPHONES, does it establish implicit filters for
the information it will use? Yes, it will show the phones of each tour guide.

Why? GeneXus looks for a relationship between the extended table of the
external For Each command and the base table of the nested For Each
command:

It's another way of looking for a 1 to N relationship, although in this case it
is an indirect one. If each RESERVATIONTRIP has a TouristGuideId, and in
the table to be navigated there is also a TouristGuideId, then GeneXus
understands that due to the relationship between the information, it will be
the same.

why it will make a Join.

It can be clearly seen in the navigation list, where the @ symbol always
indicates context data (note the @CustomerId, which refers to the value
received in the CustomerId attribute of the Parm rule). This
@TouristGuideId refers to the value of the attribute with that name in the
TRIP table accessed by the first For Each command.

18

Case Study

If this is not what the programmer wants, is there a way to avoid these
automatic filters?

Yes, using a subroutine to encapsulate the code of this second For Each
command.
If you do this, the navigation list will show it.

Subroutines are blocks of code, which are defined in an object by means
of the Sub command, which can be called later, within the same object
and as many times as we want, by means of the Do command.

In the next videos we will explain in detail how to implement them.

19

training.genexus.com
wiki.genexus.com

