
More about For each command

Review: Base transaction

Remember that GeneXus determines the base table of the For Each
command, taking into account the name of the transaction that we
declare next to the For Each command, which corresponds to the name
of the base transaction; that is, the transaction whose associated
physical table we want to run through.

In addition, the attributes declared within the For Each command,
whether in printblocks, Where and Order clauses, etc., must belong to
the extended table of the For Each base table.

In this example here, the base table of the For Each command will be
ATTRACTION; that is, the table that will be run through and whose
extended table will be accessed in order to retrieve the required data.

2

Review: Base transaction

The navigation list clearly says that the base table is ATTRACTION,
which will be run through according to the primary key of that table
that is, ordered by AttractionId and that the entire table will be run
through, also accessing the COUNTRY table to retrieve the
CountryName value, which corresponds to the country of the
attraction.

3

Review: Base transaction

It is not mandatory to specify a base
transaction for a For Each command

?

Is it mandatory to specify a base transaction for a For Each command?

The answer is no. GeneXus can calculate the base table of the For Each
command from the attributes included in the command.

4

Indexes and their relationship with database queries

PK

FK

FK

CK

Let's now move on to the indexes and their relationship with the
database queries.

We already know that indexes are efficient ways to access data.

We have already seen that, in each table, GeneXus creates an index
by the primary attribute (either a simple or compound key) and an
index by each foreign key. This is done to make data consistency
controls between tables more efficient.

Also, that it is possible to define indexes, indicating whether they
accept duplicate values or not. If we define an index that
accept duplicate values that is, a Unique index we are telling
GeneXus that it must automatically control the uniqueness of its
value; that attribute, or set of attributes over which the index is
defined, becomes a candidate key.

5

Indexes and their relationship with database queries

The database has no index by
AttractionName

If we add an Order clause, for example, to order by the name of the
attraction, the navigation list gives us a warning, informing us that the
database has no index by the attribute by which we need to order the
information, so this query could have low performance.

When we give GeneXus an attribute by which to order data, it tries to
order it in an efficient way; therefore, it looks for an index by that
attribute. But since it find it, it informs us about it.

6

Indexes and their relationship with database queries

The database has an index by
AttractionName

If we need to obtain the records of ATTRACTION ordered by the
AttractionName attribute, these records will have to be reordered
because by default they are ordered by the value of the attribute that is
the primary key.

When a query is defined, if there is a physical index created in the table
for the attribute to order by, GeneXus will use it. In this case, the query
has to be ordered by a secondary attribute: AttractionName. GeneXus
warns us in the navigation list, as we have seen, that an index hasn't
been created.

The existence of an index would optimize the query. However, the
disadvantage of creating an index is that it must be maintained. That is,
as users add, modify and delete attractions from the ATTRACTION
table, this index must be rearranged.
Once we've done this, the database will be reorganized by pressing F5
to create this new index. Then, in the navigation list, we will see that
GeneXus will use that index that has just been created.

It is worth mentioning that just as we create it, at any time we can
delete an index, and by pressing F5 and reorganizing, we will return to
the previous status.

7

Indexes and their relationship with database queries: Example

Where AttractionName >= &NameFrom and AttractionName <= &NameTo

Parm (in:&NameFrom, in:&NameTo);

Let's see this example:

Suppose we want to get a list of attractions whose names are in
alphabetical order between a couple of values received by parameter.
For example, between the letters and .
That's why we specify the Where clauses we are looking at.

Having several Where clauses is the equivalent to having only one,
where the conditions are combined with the logical operator. In
other words, only records that meet all the conditions at once will be
considered.
If we're going to filter by AttractionName, and we have an index created
by that attribute, we should always order by AttractionName to optimize
the query.

Note that if we don't enter the Order clause, GeneXus will order by
primary key, and the entire table will have to be run through to know if
an attraction is within the specified range or not.

8

When clause

When not &NameFrom.isempty()
When not &NameTo.isempty()

What result will be obtained for the For Each command we are looking
at, if the &NameFrom and &NameTo variables are empty?

If there were an attraction with an empty name, then it would be the
only one returned, since it would be the only one that would meet the
conditions. Otherwise, no attractions would be listed.

Is it possible, then, to consider the orderings and filters, so that they are
only applied in certain circumstances? For example, to only apply the
first Where clause when the &NameFrom variable is not empty? And to
only apply the second Where clause when the &NameFrom variable is
not empty?
The answer is yes. We achieve this by conditioning the Where clauses
with when. Each Where clause will only be applied when the When
condition is met.
In this way, at runtime, when we leave both variables empty, none of
the Where clauses will be applied, so all the attractions of the table will
be listed. If the &NameFrom variable is empty but &NameTo is not, the
first Where clause will not be applied but the second one will be, so all
attractions whose name is lower than or equal to &NameTo will be
listed.

In the same way, you can set conditions for applying an order or not. In
fact, a series of conditional orders can be specified, in order to choose
the first one whose condition is met.

9

When none clause

Let's now move on to the When none clause.

What happens when none of the records in the base table meets the
conditions indicated?
Let's suppose that in this case we want to print a warning message
on the output... saying that there are no associated records.

To this end, we will program the When none clause.

All commands written between when none and endfor will be
executed sequentially and only when no records from the base table
of the For Each command have been found that meet the conditions
indicated.

In this example, we have decided to print a message, but we may
also type a series of commands, such as another For Each command,
for example.
Since what will be executed after the When none clause will imply
that the search was unsuccessful, if we type a For Each command
there, the When none clause will not be nested. It will be like a
standalone For Each command.

Summary

where condition [when condition]

where condition [when condition]

order att1, att2, … , attn [when condition]

order att1, att2, … , attn [when condition]

endfor

main code

BaseTransaction

When none

……….

For each

As we have seen, the base table of a For Each command is
determined from the specified base transaction; the rest of the
attributes mentioned, both in the body of the For Each command
(main code) and in the Order and Where clauses, must belong to the
extended table of that base table.

The attributes mentioned in the When none block will be not taken
into account.

We gray out everything we've seen before. Here, we have added the
When and When none clauses.

Later on, we will see that more clauses can be added to this essential
command to access the database.

11

A case study

Customer
{

CustomerId*
CustomerName

}

TouristGuide
{

TouristGuideId*
TouristGuideName
Phone
{

TouristGuidePhoneId*
TouristGuidePhoneNumber

}
}

Trip
{

TripId*
TripDescription
TouristGuideId
TouristGuideName

}

Reservation
{

ReservationId*
ReservationDate
CustomerId
CustomerName
Trip
{

TripId*
TripDescription

}
}

Finally, let's examine a case study:

The Customer transaction, the Trip transaction corresponding to the
trips with a tour guide in charge, the Tourist Guide transaction with its
set of phone numbers, and the Reservation transaction to record, for
each customer, the set of trips that he or she has booked.

We need to obtain a list showing, for a given customer, and from a
given date, all the trips he has booked, and for each of them the contact
phone numbers of the tour guide in charge.

To solve it, we propose the following source:

12

A case study
TouristGuide
{

TouristGuideId*
TouristGuideName
Phone
{

TouristGuidePhoneId*
TouristGuidePhoneNumber

}
}

Reservation
{

ReservationId*
ReservationDate
CustomerId
CustomerName
Trip
{

TripId*
TripDescription

}
}

Trip
{

TripId*
TripDescription
TouristGuideI
TouristGuideName

}

To solve it, we propose the following source:

Let's examine if the information listed is the one we are asked for.
There is a couple of nested For Each commands. In the first one, we
explicitly say that the base table will be the one corresponding to
the Trip level of the Reservation transaction; that is to say, the one
called ReservationTrip.

We confirm that within that external For Each command no
attribute is being used that belong to the extended table of
RESERVATIONTRIP. If so, the navigation list will show a warning that
this attribute is not accessible.

The attributes that we must check are those found in the Where
clause and within the printblock named Trips, which in this case are
the TripDescription attributes, included in TRIP, and
ReservationDate, included in RESERVATION.

13

A case study

In the table diagram:

We can clearly see that from RESERVATIONTRIP we access a single record
of the TRIP table and a single record of RESERVATION. Therefore,
GeneXus must access those two tables every time it iterates in the For
Each command.

So, which records of the base table will the For Each command work
with? With those that comply with the following: when going to the
RESERVATION table to evaluate the ReservationDate value, it is greater
than or equal to the value of the &ReservationDate variable received in a
parameter.
Also, the CustomerId value must also match the value directly received
through a parameter in that attribute. Remember that to in an

is to determine that this attribute will be instantiated. In other
words, whenever that attribute is used anywhere, it will be used with the
value received when the object was invoked.

Since the For Each command being examined already accesses the
RESERVATION table containing it, an automatic filter will be applied for
that value of CustomerId.

It is important to clarify the following: The fact that the attribute received
in the Parm rule belongs to the extended table of the For Each command
DOES NOT make it automatically apply as a filter. For this to happen, the
For Each command must access that particular table of the extended
table to perform an action.

14

A case study
Indirect 1-N relationship

Extended table of the external For each command.

Base table of the internal For each command.

Same TouristGuideId

Think about what happens with the nested For Each command. Its
base table will clearly be the one associated with the Phone level of
the TouristGuide transaction. The following question is: Does it
establish implicit filters for the information it will use? Yes, it will show
the phones of each tour guide.

Why? GeneXus looks for a relationship between the extended table of
the external For Each command and the base table of the nested For
Each command:

It's another way of looking for a 1 to N relationship, although in this
case it is an indirect one. If each RESERVATIONTRIP has a
TouristGuideId, and in the table to be navigated there is also a
TouristGuideId, then GeneXus understands that they will be the same
due to the relationship between them. why it will make a Join.

In the next few videos, we will continue to learn more about the For
Each command.

15

training.genexus.com
wiki.genexus.com

