More about For each command

GeneXus

Review: Base transaction

Couty NN pfMEc 2 print Title
¥ Countryld ¥ Attractionld
Cityld AttractionName .
' CityNAme Categoryld for each|Attraction
2 Alinchnbhon print Attractions
Countryld
Cityld endfor
= v
Country a |
¥ Countryld 1 v
Eecoinghons (Category 20| O
Componene e S S e L B L

[£] = Attractions

. AttractionP

_ AttractionName . CountryName

Remember that GeneXus determines the base table of the For Each
command, taking into account the name of the transaction that we
declare next to the For Each command, which corresponds to the name of
the base transaction; that is, the transaction whose associated physical
table we want to run through.

In addition, the attributes declared within the For Each command, whether
in printblocks, Where and Order clauses, etc., must belong to the
extended table of the For Each command'’s base table.

In this example here, the base table of the For Each command will be
ATTRACTION; that is, the table that will be run through and whose
extended table will be accessed in order to retrieve the required data.

Review: Base transaction

Procedure AttractionsList Navigation Report =
o . .
Mame o Attractionslist Environment Default (C#)
DEEEI’IptICI‘I. -r"lttractlcns List Spec. Version & 15_0_1-106211
Qutput Devices File =
Main Yes Form Class Grapth .
Program Name AttractionsList2
Call Protocal HTTP
Parameters
—evels é‘
For Each Attraction (Line: 10) =]
Order: AttractionId
Index: IATTRACTION
MNawigation Start from: FirstRecord
filters: Loop while: MotEndOfTable
Join location: Server
Ed=attraction (Attractionld)
=Country { Countryld)

The navigation list clearly says that the base table is ATTRACTION, which
will be run through according to the primary key of that table -that is,
ordered by Attractionld- and that the entire table will be run through, also
accessing the COUNTRY table to retrieve the CountryName value, which
corresponds to the country of the attraction.

Review: Base transaction

CountryCity 2 7»"'Attracﬁon 2 pr‘int Title
¥ Countryld ¥ Attractionld ?
¥ Cityld AttractionName /
CityNAme Categoryld fOI" eaCh
Al ionPh - .
X o print Attractions
e . endfor
= \ 4
Country a |
¥ Countryld v
CountryName [Category P 5= Tile
Codontone: s T o L L
[E] = Attractions
It is not mandatory to specify a base Becessssssesesiaseasineses et LT
transaction for a For Each command o

Is it mandatory to specify a base transaction for a For Each command?

The answer is no. GeneXus can calculate the base table of the For Each
command from the attributes included in the command. The way to find
the base table will not be seen in this course.

Indexes and their relationship with database queries

=[E Attraction =& Category Attribute Order
¥ AttractionId ? CategoryId =2 Attraction Indexes
? AttractionName p CategoryName PK I = IAttraction Primary Key I
2 CountryId *_Attractionld Ascending
v gz:;;ryName 5@%(:0“"“», FK | =lz-2 IAtCtrictionlId /Iioreigg- Key |
2 Ci * Category! scending
CountryId
¢ CityNAme Sg CountryName CK | = UAttraction Unique |
» Categoryld sEci ¥ ° AttractionName Ascending
¢ CategoryName k- |ty' FK | = IAttraction?2 Foreign Key |
(a] AttractionPhoto f Cityid * CountryId Ascending
p GtyNAme ¢ Cityld Ascending

Let's now move on to the indexes and their relationship with the
database queries.

We already know that indexes are efficient ways to access data.

We have already seen that, in each table, GeneXus creates an index by the
primary attribute (either a simple or compound key) and an index by each
foreign key. This is done to make data consistency controls between
tables more efficient.

Also, that it is possible to define indexes, indicating whether they accept
duplicate values or not. If we define an index that doesn’t accept duplicate
values -that is, a Unique index- we are telling GeneXus that it must
automatically control the uniqueness of its value; that attribute, or set of
attributes over which the index is defined, becomes a candidate key.

Indexes and their relationship with database queries

=[5 Attraction =& Category
? AttractionId Y Categoryld
? AttractionName { CategoryName
2 CountryId
¥ CountryName =& Country
a C?tyId ¥ Countryld
¥ CityNAme © CountryName
» Categoryld == city
¢ CategoryName i~y
v Cityld
[l AttractionPhoto ; C:tt;N Ame

The database has no index by
AttractionName

print Title

:for each Attraction| order AttractionName
print Attractions

endfor
ey =i
spc0038 There is no index for order AttractionName; poor performance may be noticed in
group starting at line 3.
Levels =]
For Each Attraction (Line: 10) =
Order: AttractionMame
No index
Navigation Start from: FirstRecord
filters: Loop NotEndCfTable

while:
Join location: Server

El=Attraction (At

=Country (Co

If we add an Order clause, for example, to order by the name of the
attraction, the navigation list gives us a warning, informing us that the
database has no index by the attribute by which we need to order the
information, so this query could have low performance.

When we give GeneXus an attribute by which to order data, it tries to
order it in an efficient way; therefore, it looks for an index by that attribute.
But since it can't find it, it informs us about it.

Indexes and their relationship with database queries

print Title

=[E] Attraction =& Category
? Attractionld ¥ categoryld for each Attraction|order AttractionName
? AttractionName © CategoryName print Attractions
2 CountryId endfor
¥ CountryName =& Country
Cityld 15
2 CltyNAme ? COUntryId Procedure AttractionsList2 Navigation Report =]
by P CountryName Name o} Altractionslist? Environment Default (C2)

» Categoryld ;:1‘TI City gi:::'f;ce:‘ces :ﬁ:acm”s List2 Spec. version & 15_0_1-108211
¥ CategoryName i . Main Yes brogram ame AtteortinaList2
S ? ? CItYId Call Protocol ~ HTTE
gAttraCtlonPhoto z Parameters

P CityNAme D -

For Each Attraction (Line: 10) =]
Order: AttractionName
. Index: UATTRACTIONNAME
fiItEr:: Frcm:)
E_chclp. NotEndOfTable
The database has an index by ocation: o
AttractionName EH-dtggon (4

If we need to obtain the records of ATTRACTION ordered by the
AttractionName attribute, these records will have to be reordered because
by default they are ordered by the value of the attribute that is the primary
key.

When a query is defined, if there is a physical index created in the table for
the attribute to order by, GeneXus will use it. In this case, the query has to
be ordered by a secondary attribute: AttractionName. GeneXus warns us
in the navigation list, as we have seen, that an index hasn't been created.

The existence of an index would optimize the query. However, the
disadvantage of creating an index is that it must be maintained. That is, as
users add, modify and delete attractions from the ATTRACTION table, this
index must be rearranged.

Once we've done this, the database will be reorganized by pressing F5 to
create this new index. Then, in the navigation list, we will see that GeneXus
will use that index that has just been created.

It is worth mentioning that just as we create it, at any time we can delete
an index, and by pressing F5 and reorganizing, we will return to the
previous status.

Indexes and their relationship with database queries: Example

Parm (in:&NameFrom, in:&NameTo);
Attractions List

print Title

. Colosseum Italy
e for each Attraction order AttractionName
F— Where AttractionName >= &NameFrom

| Eiffel Tower France .
= S Where AttractionName <= &NameTo
ﬂ Louvre Museum France pr‘int Attractions

endfor

Where AttractionName >= &NameFrom and AttractionName <= &NameTo

Let's see this example:

Suppose we want to get a list of attractions whose names are in
alphabetical order between a couple of values received by parameter. For
example, between the letters “B” and “N.”

That's why we specify the Where clauses we are looking at.

Having several Where clauses is the equivalent to having only one, where
the conditions are combined with the “and” logical operator. In other
words, only records that meet all the conditions at once will be
considered.

If we're going to filter by AttractionName, and we have an index created
by that attribute, we should always order by AttractionName to optimize
the query.

Note that if we don't enter the Order clause, GeneXus will order by primary
key, and the entire table will have to be run through to know if an
attraction is within the specified range or not.

When clause

When not &NameFrom.isempty()

print Title !
/ When not &NameTo.isempty()

for each Attraction |order Attr‘actionNar@
—>MAttr‘actionName >= &NameFrom |when |not &NameFrom.IsEmpty()
—— Where AttractionName <= &NameTo when not &NameTo.isempty()

print Attractions
endfor

What result will be obtained for the For Each command we are looking at,
if the &NameFrom and &NameTo variables are empty?

If there were an attraction with an empty name, then it would be the only
one returned, since it would be the only one that would meet the
conditions. Otherwise, no attractions would be listed.

Is it possible, then, to consider the orderings and filters, so that they are
only applied in certain circumstances? For example, to only apply the first
Where clause when the &NameFrom variable is not empty? And to only
apply the second Where clause when the &NameFrom variable is not
empty?

The answer is yes. We achieve this by conditioning the Where clauses with
when. Each Where clause will only be applied when the When condition is
met.

In this way, at runtime, when we leave both variables empty, none of the
Where clauses will be applied, so all the attractions of the table will be
listed. If the &NameFrom variable is empty but &NameTo is not, the first
Where clause will not be applied but the second one will be, so all
attractions whose name is lower than or equal to &lameTo will be listed.

In the same way, you can set conditions for applying an order or not. In
fact, a series of conditional orders can be specified, in order to choose the
first one whose condition is met.

When none clause

print Title

for each Attraction order AttractionName
Where AttractionName >= &NameFrom when not &NameFrom.IsEmpty()
Where AttractionName <= &NameTo when not &NameTo.isempty()

print Attractions
When none 1 = Tile
Print NoAttractions RO ———
endfor o Attractions List o

(] = Attractions

 fttractionP |~

AttractionName - CountryName

’ NbammmwsnyEwmd

Let's now move on to the When none clause.

What happens when none of the records in the base table meets the
conditions indicated?

Let's suppose that in this case we want to print a warning message on the
output... saying that there are no associated records.

To this end, we will program the When none clause.

All commands written between when none and endfor will be executed
sequentially and only when no records from the base table of the For
Each command have been found that meet the conditions indicated

In this example, we have decided to print a message, but we may also
type a series of commands, such as another For Each command, for
example.

Since what will be executed after the When none clause will imply that
the search was unsuccessful, if we type a For Each command there, the
When none clause will not be nested. It will be like a standalone For Each
command.

Summary

For each BaseTransaction

order att,, att,, ..., att, [when condition]

order att,, att,, ..., att, [when condition]
where condition [when condition]

where condition [when condition]
main code

When none

endfor

In summary...

As we have seen, the base table of a For Each command is determined

from the specified base transaction; the rest of the attributes mentioned,
both in the body of the For Each command (main code) and in the Order
and Where clauses, must belong to the extended table of that base table.

The attributes mentioned in the When none block will be not taken into
account.

We gray out everything we've seen before. Here, we have added the
When and When none clauses.

Later on, we will see that more clauses can be added to this essential
command to access the database.

11

A case study

Customer TouristGuide Reservation
{ { {
Customerld* TouristGuideld* Reservationld*
CustomerName TouristGuideName ReservationDate
} Phone Customerld
{ CustomerName
TouristGuidePhoneld* Trip
TouristGuidePhoneNumber {
Trip } Tripld*
{ } TripDescription
Tripld* }
TripDescription }

TouristGuideld
TouristGuideName

Finally, let's examine a case study:

Let's consider the following transaction design:

The Customer transaction, the Trip transaction corresponding to the trips
with a tour guide in charge, the Tourist Guide transaction with its set of
phone numbers, and the Reservation transaction to record, for each
customer, the set of trips that he or she has booked.

We need to obtain a list showing, for a given customer, and from a given
date, all the trips he has booked, and for each of them the contact phone
numbers of the tour guide in charge.

To solve it, we propose the following source:

12

A case study g’rip :{rouristGuide
Tripld* TouristGuideld*
TripDescription TouristGuideName
TouristGuidel Phone
TouristGuideName {
} TouristGuidePhoneld*
TouristGuidePhoneNumber
e | conons | vartis| }
}

Parm(in:&ReservationDate, in: CustomerId);

Reservation

{
Reservationld*
For each Reservation.Trip | ReservationDate
Where ReservationDate >= &ReservationDate Customerld
Print Trips CustomerName
For each TouristGuide.Phone Trip
Print TouristGuidesPhones {
Endfor Tripld*
Endfor TripDescription
}

To solve it, we propose the following source:

Let's examine if the information listed is the one we are asked for. There is
a couple of nested For Each commands. In the first one, we explicitly say
that the base table will be the one corresponding to the Trip level of the
Reservation transaction; that is to say, the one called ReservationTrip.

We confirm that within that external For Each command no attribute is
being used that doesn't belong to the extended table of
RESERVATIONTRIP. If so, the navigation list will show a warning that this
attribute is not accessible.

The attributes that we must check are those found in the Where clause
and within the printblock named Trips, which in this case are the
TripDescription attributes, included in TRIP, and ReservationDate, included
in RESERVATION.

13

A case study

| Reservation 2 ' Trip 2
9 Reservationid | ¢ Tripld |
Customerld TripDescription
. ReservationDate . TouristGuideld
sout |Rules* | C tio ‘ | i ‘

Par‘m{in:&ReservationDateI |in: Customer‘Id);l

< ¥
ReservationTrip 2

For each Reservation.Trip ¥ Reservationld ‘
Where ReservationDate >= &ReservationDate ¢ Tripld
Print Trips
For each TouristGuide.Phone
Print TouristGuidesPhones
Endfor
Endfor

In the table diagram:

We can clearly see that from RESERVATIONTRIP we access a single record of
the TRIP table and a single record of RESERVATION. Therefore, GeneXus
must access those two tables every time it iterates in the For Each
command.

So, which records of the base table will the For Each command work with?
With those that comply with the following: when going to the RESERVATION
table to evaluate the ReservationDate value, it is greater than or equal to the
value of the &ReservationDate variable received in a parameter.

Also, the Customerld value must also match the value directly received
through a parameter in that attribute. Remember that to “receive in an
attribute” is to determine that this attribute will be instantiated. In other
words, whenever that attribute is used anywhere, it will be used with the
value received when the object was invoked.

Since the For Each command being examined already accesses the
RESERVATION table containing it, an automatic filter will be applied for that
value of Customerld.

It is important to clarify the following: The fact that the attribute received in
the Parm rule belongs to the extended table of the For Each command
DOES NOT make it automatically apply as a filter. For this to happen, the For
Each command must access that particular table of the extended table to
perform an action.

14

A case study Indirect 1-N relationship
I‘iﬁeservatii;an 2 i
7 Reservationld Extended table of the external For each command.
Customerld
ReservationDate
ReservationTrip a) » Trip a ‘ > Tour'slGlEéﬁi 2 i
¥ Reservationld ¥ Tripld ¥ TouristGuideld
¥ Tripld TripDescription TouristGuideName
‘ TouristGuideld | A
|
|
(TouristGuidePhone B ;:_
Base table of the internal For each command. ¥ TouristGuideld

¥ TouristGuidePhoneld
TouristGuidePhoneNumber

Same TouristGuideld

Think about what happens with the nested For Each command. Its base
table will clearly be the one associated with the Phone level of the
TouristGuide transaction. The following question is: Does it establish
implicit filters for the information it will use? Yes, it will show the phones of
each tour guide.

Why? GeneXus looks for a relationship between the extended table of the
external For Each command and the base table of the nested For Each
command:

It's another way of looking for a 1to N relationship, although in this case it
is an indirect one. If each RESERVATIONTRIP has a TouristGuideld, and in
the table to be navigated there is also a TouristGuideld, then GeneXus
understands that they will be the same due to the relationship between
them. That's why it will make a Join.

In the next few videos, we will continue to learn more about the For Each
command.

15

GeneXus

16

