Modules and External Objects

GeneXus

Here, we will consider some GeneXus objects that prove useful at the time of
encapsulating functionalities and organizing objects in our knowledge base.

Modules

Let’s consider modules to start with.

KB1 KB2

Sales Module r

Modules are GeneXus objects acting as containers that allow us to group
objects from our KB, making it easier to understand and to maintain the
KB, as well as to integrate objects with other KBs.

What is a module?

» GeneXus object that enables us to group objects from the KB and encapsulate its functionalities.
» Designed to facilitate the understanding, maintenance and integration of objects among KBs.
» Modules and folders enable us to create hierarchies.

% KB Explorer 2 x TravelAgency - GeneXus 16 Trial
Emls BOYCH. EEx Releas
Open: | File Edit View Llayout Build Knowledge Manager Window Tools Test Help
TravelAgency ~ 3! # X [3 startPage X
Rool Module Open | \ Leam Samples
GeneX Traveltgency ~
Common oo I 0 Object CTRL+N
. Open Fi2 Module
* Open Part ’ Folder
Security p
Web 1 web Panel
[References CIRL+F12 DBAudit allows the integratic
QueryViewer Qu & o the integra
&4 B Histoy CTRLYMAYUSCULASYH e dat elina full
aAlfh"B B A Team Development » Janner for the appli
54 Airport 157 at|[@] Properties 4
S At (3 Export
At Select Left Side To Compare

When we create a knowledge base, the Root Module is then created and,
by default, all the objects we create remain in that module.

Modules and folders aid us in organizing objects. However there are
conceptual differences between modules and folders. Modules help in
encapsulating and modularizing parts of the KB, with the possibility of
determining which objects are visible from other objects and which are
not, as we will see later.

Folders, on the other hand, act as containers that only help in organizing
objects by separating them according to specific criteria. Along with
modules, they create a hierarchical tree where the root is always a module
as in the case of the Root Module. We can see this in KB Explorer.

Modules may have module children, but folders may not have modules as
their children.

As a general rule, we could say that it is possible to use modules to
encapsulate and folders for organizing objects within the module.

In order to add an object to a module, we could drag it to the module in
KB Explorer, or otherwise click the right button on the module and then
New Object, or otherwise change the value of the object’s Module/Folder

property.

Adding already created modules to the KB

» Knowledge Manager / Manage Module References

B startPoge X of Manage Module References X
Serverss Add | Browse Module Information:
Local Modules:
Chatbot (4.0.16.164759) Install &
GeneXus Chatbot module is a
basic set of interfaces and
implementations of data

E‘B GeneXusAl (4.0.0.162960)

cription:

[ﬁ‘?] GeneXusChannels (3.
L/ Genexus Channels e
ciad

@ GeneXusCryptography (3.0.48.165606)
Bouncy castle Based Cryptography Module

[\.% GeneXusFTPS (3.0.48.165606)
N FTPS implementation

@ GeneXusJWT (3.0.48.165606) 1d: 2691f80c-b637-4cc0-a8f0-23a1726356ce
L7 JSON Web Tokens implementation as defined on
RFCT519

@ GeneXusLegacyFtp (3.0.0.162960)
GeneXus Legacy Ftp

Packed modules that have been shared with us may be viewed through
the Knowledge Manager / Manage Module References menu.

For each module available, we can see its information to decide whether
we will install it in our KB or not. If we do, it will be saved under the
References node of KB Explorer, as opposed to objects we create, which
are saved in the Root Module by default.

We cannot modify the objects of these modules (we view them as Read-
Only) which are already compiled. So, when we press F5, it is not
necessary to specify or generate them and so on.

However, we will be able to use them freely from the objects in our
application, using all the functionalities they have available.

Any member of the community may create, share or even sell his/her
modules through Marketplace.

One of these is the GeneXus module, also known as GeneXus Core.

GeneXus Module

X Analytics

& AnalyticsPurchase

X| Clipboard

X| Geolocation

¢ Geolocationlnfo

5 GeolocationPickerParameter
& GeolocationProximityAlert

X] Log

x| Maps

& Messages

) Route

X! Runtime

X| Server

wla Domains
sSD

Server
Social

ola Domains

The GeneXus module is distributed automatically and installed in all KBs.
And as any external mode of our application, we will find it in the
References node.

It comprises a series of sub-modules that contain a set of APls with their
corresponding domains and SDTs, which enable us to interact with the
various technologies, devices, sensors, applications and so on.

These APls are implemented as External Objects, which we will see next.

More information on modules

https://wiki.genexus.com/commwiki/serviet/wiki?22411

You will find further information on the module object at this wiki link:
https://wiki.genexus.com/commwiki/servlet/wiki?22411

External Objects

Let’s now see what External Objects are.

External objects are GeneXus objects that enable us access to external
resources of our KB as if they were another object in the KB.

That’s why they are increasingly more frequent and important in our web
and mobile device applications. Let’s now see how to use them.

What resources do we have as external objects for our KB?

« Native objects from programming languages:
« NET Assemblies (.dll)
» Java Classes (.class)

« Resources from several external sources:
« Enterprise Java Beans (EJB)
» Stored Procedures in a DBMS
* Web Services (WSDL=SOAP, OpenApi=REST) published in a Web Server
* SAP BAPI modules
+ JSON files
+ XML schemas

 External Objects available in GeneXus
« APIs for Smart Devices: Access to HW (camera, GPS, microphone, etc.) y SW (calendar, contacts, notifications, etc.)
» APIs to Web: Access to events, communication with server, clipboard, maps, social networks, etc.

» External Objetos published in GeneXus Marketplace

We may import different types of resources into our KB. For instance,
when we have something programmed in .NET we may generate a DLL
and import it into the KB as an external object. Then, from our app, we
may invoke the functions included in the DLL as if they were procedures
programmed in GeneXus.

The same happens with classes created in Java.

We may also import resources stores in other external sources, like Java
Beans programs, procedures stored in a database, webservices (both
SOAP and REST), SAP modules, JSON files generated by any application,
or XML schema.

GeneXus also provides a set of External Objects that are located in the
RootModule or in the GeneXus module that enable us access to a variety
of resources such as APIs for interacting with the hardware, or native
applications of mobile devices, or APls to have access to the server, to
events, or to Windows applications, as well as to external sites for using
maps and social networks, among other things.

There are also external objects published on the GeneXus Marketplace
that we may include in our application.

Create an external object using the Wizard

Tools | Test Help
Extensions Manager

Database Reverse Engineering

Application Integration » :// cURL Inspector

Workflow 3 E‘] External Data Store Service Import
Options TQ_ Fonts Import

Advanced » @ Images Import

0 Json Import
% Sketch Import

Explore Knowledgebase Directory
Explore Target Environment Directory

@ <MD Environment Directory {} openaPiimport
y | X WSDL Import

, &5 XML Schema Import

Security
GeneXus Access Manager

Update Android SDK

GeneXus Account...

4

c#

En la version Full:

cURL Inspector

Net Assembly Import

External Data Store Service Import
SAP BAPI Import

Fonts Import

Images Import

Java Class Import

Json Import

Sketch Import

OpenAPl Import

X! WSDL Import

XML Schema Import

X ExternalObject1* X

Help | Documentation

Structure
X ExternalObjectt
| Properties
5] Methods
P> Events

The best way to create an external object is to use a wizard. If we go to the
Tools menu and select Application Integration, we will see the various
resources to be imported, and a specific wizard will be executed for that
resource. Upon finalizing the wizard, the external object created will be
automatically associated with the resource. All the properties of the
external object will be adjusted in accordance with the type or resources

that has been imported.

We may also create an external object with New Object, just like with any
other GeneXus object, though in that case, we will need to set up its

properties, methods and events manually.

How are external objects used?

1) We create a variable with the External Object type
2) We invoke the methods or assign the properties available

o WebPanel2* X

Web Form | Rules | Events | Conditions Help | Docun|

Name Type
& | Variables
+ & | Standard Variables

FacebookT est Facebook, GeneXus.Social v]

Input Type

Notify Context Change

Input History

©/[AccessToken |
] PostToWall

5] Sharelmage ‘Auto Resize
5] ShareLink
] ShareVideo

Is Password

Once we have created the external object based on the properties that
correspond to the external object that we wish to use, it will be available
just like any other data type in the knowledge base.

We use it in the same way as any other type of extended data, by defining
a variable of that type and then calling the methods and/or setting up the
properties we need.

You will find further information on external objects if you go to this link on
screen: https://wiki.genexus.com/commwiki/servlet/wiki?5669

Example of use of an external object with JavaScript

Another thing we can do with External Objects is interact with JavaScript;
for example, to link events implemented in an external JavaScript to a
GeneXus event.

Let's see this with a sample application.
Note that when we scroll in the application, the top bar gets smaller.

This is implemented with a JavaScriptChangeOnScroll event programmed
externally. Let’s see how to link this JavaScript to GeneXus.

E=

Example of use of an external object with JavaScript (continued)

Name ChangeOnScroll
/ Desaiption Change On Scroll
Type Native Object
Schangeonscrols B3| — =) RWDMPEventDay X |X] ChapgbOnScroll X
var croll = {
eight: Help | Documentasién
Structure Type
i Ctingedaterol Javascript External N changeonscrall
0 ", function() { © Properties (i
istanceY = window.pageYOffset || document.documentElement.scrollTop; ©|ShrinkOnHeight Numeric(8.0) Javascript Reference-
var shrinkOn = changeonscroll.shrinkOnHeight; {£)Methods
if (dis Y > shrinkOn) '{ P Events
gx s.notify (" B y: P ScroliToShrink None
} P scrolitoExpand None
else {

gx.fx.obs.notify(")i
}
N

I

Internal Name ScrollToShrink

Description

Event Start
Form.HeaderRawHTML = !"<link href='https://fonts.googleapis.com/css?family=Source+S

Form.HeaderRawHTML += GetChangeOnScrollScript()
changeonscroll.ShrinkOnHeight = 20

a0

The JavaScript we have is very simple. Basically, when a certain scroll
height has been reached, it triggers a Shrink event; otherwise, it triggers
an Expand event.

How do we link this JavaScript to GeneXus?

We do this with an external object called Changeonscroll, which is
basically associated with an external JavaScript called Changeonscroll,
and here are the events this JavaScript is triggering.

In this case, they have the same name as in the JavaScript but we could
change it.

These events were implemented in the Web Master Panel (or master page)
where the external object Changeonscroll is included with the
ScrolltoExpand event and the ScrolltoShrink event.

In one case we are hiding the component and in the other case we are
showing it, since basically we want it to be displayed or hidden depending
on how far down the scroll bar is.

To include the JavaScript in the application, we're doing it the same way
we have always done it, which is to add the script to the HTML code.

For more information about external objects:

https://wiki.genexus.com/commwiki/servlet/wiki?5669

For more information about external objects, visit the following link
displayed on the screen.

GeneXus’

training.genexus.com
wiki.genexus.com

