
………..……………………………………………………

Logic subordination

In this video, we will address the topic of logical subordination in GeneXus.

1

………..……………………………………………………

Reality: Casino

The type of slot that is being entered in the lines must be provided by the supplier of the order.

To do so, we will focus on a KB where we are developing an application for a
casino, which, among other things, allows registering the purchase orders of game
slots from its suppliers.

We will use the SlotType transaction to register the types of game slots, the
Supplier transaction to register the suppliers and the slots they offer, and finally—
the transaction we are going to focus on for this case study—PurchaseOrder, to
register the purchase orders for certain types of slots that the casino places with
one of its suppliers.
When entering a purchase order, it must be checked in the PurchaseOrder
transaction that the type of slot being entered in the lines is provided by the
supplier of the order (first-level attribute).
Is this ensured by the design?

The answer to the question is no. With this design, this check will not be made.
Let's see why.

2

………..……………………………………………………

We’ll start with a simpler case to see the difference. Between the first level of
PurchaseOrder and the first level of Supplier there is a subordination relationship.
In other words: SupplierId will be a foreign key in the PurchaseOrder table,
pointing to the Supplier table, which has SupplierId as its primary key. For this
reason, an index will be automatically created in Supplier by primary key and an
index in PurchaseOrder by foreign key.

3

………..……………………………………………………

These indexes will be used to make uniqueness and referential integrity controls
efficiently. That is to say:
• The index by primary key in Supplier will be used to control that:

• When inserting a supplier there is no other with the same value of
SupplierId, and that

• When an order for a supplier is inserted, it exists.

4

………..……………………………………………………

Uniqueness and referential integrity controls

• The index by primary key in Supplier will be used to control that:

• When inserting a supplier, there isn’t another one with the same SupplierId value

• When an order for a supplier is inserted, it exists.

• The index by foreign key in PurchaseOrder will be used to control that:

• When deleting a supplier, there is no order referencing it.

• The index by foreign key in PurchaseOrder will be used to control that:
• When deleting a supplier there is no order referencing it.

Since there is a (physical) subordination between Supplier and PurchaseOrder,
these checks are performed.

Now, what happens when we enter a slot type in the PurchaseOrder transaction?

5

………..……………………………………………………

Let's look at the relationship between the tables:

When a record is entered in the PurchaseOrderSlotType table, we want to check in
the SupplierSlotType table whether there is a record with the SupplierId value
corresponding to PurchaseOrderId, and with the value of SlotTypeId
corresponding to the SlotTypeId of the record being inserted, since that
information is stored in memory.

That is to say, when trying to insert a new SlotTypeId in the grid of the
PurchaseOrder transaction, you have the SlotTypeId value that the user has just
entered or selected (using the selection list), and also the SupplierId value
(specified by the user on the first level of the transaction). Since these two
attributes—together—constitute the primary key of the SupplierSlotType table,
then there is an index in that table by primary key that would allow the integrity
check to be made efficiently. But, will it be done?

The answer is no.

6

………..……………………………………………………

Note that the difference with the simple case we saw at the beginning is that
actually {SupplierId, SlotTypeId} is not a foreign key in PurchaseOrder, because the
two attributes are not in the same table. However, we could say that they form a
logical foreign key, even though they don’t exist for relational databases.
The problem is that GeneXus performs referential integrity checks if it understands
that there is a physical subordination relationship between the tables.
Therefore, it will not make them in this case, allowing you to enter a type of slot
that is not provided by the order supplier.

7

………..……………………………………………………

Let's see this in the following example: the supplier with identifier 1, named
International Game Technology, provides only the slots with identifiers 3 and 4
(Virtual reality slot and 3D slot respectively). However, in the purchase order we
indicate that we will buy from that supplier the slots of type 1 and 2 (precisely the
ones they do not provide).

How can we solve this problem?

8

………..……………………………………………………

Possible solution

In the rules, invoke a procedure that performs the control:

The first thing we can think of is to invoke a procedure in the PurchaseOrder
transaction rules that performs the check:

&ok = SupplierProvidesSlot(SupplierId, SlotTypeId);

And in case of returning False, show the following error:

Error('The slot type is not provided by the supplier') if not &ok;

9

………..……………………………………………………

We would have achieved the same effect in another way, without writing
anything, if in the Supplier transaction there had been a secondary attribute on
the second level, so as to infer it in PurchaseOrder, and force GeneXus to notice
the relationship.

A “No matching” error will be displayed if the type of slot that is being entered in
the lines is not provided by the supplier in the order.

10

………..……………………………………………………

We could use the RefMsg rule, which is used to customize the error message when
a referential integrity check is made on insert or update from a foreign key, and it
fails.
This rule has as parameters—in addition to the message that we want to be
displayed in case the RI check fails—the attribute(s) that make up the foreign key.

11

………..……………………………………………………

Something to think about:

What will happen in this solution if you delete a slot type from a supplier for which orders already exist?

SUPPLIERSLOTTYPE TABLE

SupplierId SlotTypeId

1 3

1 4

PURCHASEORDERSLOTTYPE TABLE

PurchaseOrderId SlotTypeId PurchaseOrderSlotTypeQty

2 3 …

The record will be deleted

Supplier’s Rules:

An interesting question is what will happen with this solution if you want to delete
a slot type from a supplier for which orders already exist.

That is to say, if the user, through the “Supplier” transaction tries to delete a line
for which there is a “PurchaseOrder” with that supplier and slot type.

In this case, GeneXus will not be able to make a referential integrity check because
there is no index by {SupplierId, SlotTypeId} in the PurchaseOrderSlotType table.
Since that foreign key only exists at a logical level (in the extended table), there
will be no index at all—given that an index corresponds to a physical concept.
Therefore, this check will have to be programmed in the rules of the “Supplier”
transaction, invoking a procedure to do it and then triggering an error according to
the result returned.

12

………..……………………………………………………

training.genexus.com

wiki.genexus.com

training.genexus.com/certifications

13

