
………..……………………………………………………

Logic for querying the database in GeneXus

For each command: an encompassing look

Here we will focus on reviewing the syntax of the For each command, with a view
to extending its scope to other queries.

1

………..……………………………………………………

For each

DP Group

Grids

Navigation
groups

In GeneXus, the For each command is the main way of accessing the database.
This means that, in general, its logic will be valid for other forms of access, such as
groups of data providers or grids with a base table in panels or web panels. To
refer generically to any of these ways sometimes we use the expression
“navigation groups.”

Of course, there will be some differences; for example, the language of Data
Providers is declarative and returns a structured output, so the body of a For each
command is not programmed in the same way as a Data Provider group. However,
the clauses that can be applied to it are almost the same... here we see the base
transaction...

2

………..……………………………………………………

For each BaseTrn
skip exp count exp
order att…
unique att…
using DataSelector(parm…)
where condition when condition
blocking n

DP Group BaseTrn
skip exp count exp
order att…
unique att…
using DataSelector(parm…)
where condition when condition

Grids Base Trn property
Order property
Conditions property
Unique property
Data Selector property

Navigation
groups

... but we also have all these others. The blocking one, as we will see, only applies
to For Each commands (and to For each commands that update or delete).

Grids offer several of these clauses in properties, and what would correspond to
the body of the For each is written in the corresponding Load event (also Refresh
in the case of Panels).

In addition, as we will review, although more restrictive, we have a query to the
database when a Data Selector is executed in a Where clause with the In operator.

3

………..……………………………………………………

So, let's review all the parts of the For each command and then go into some of
them in more detail.

skip expression1 count expression2

order att1, att2, … , attn [when condition]

order att1, att2, … , attn [when condition]

order none [when condition]

unique att1, att2, … , attn

using DataSelector (parm1, parm2, … , parmn)

where condition [when condition]

where condition [when condition]

where att IN DataSelector (parm1, parm2, … , parmn)

blocking n

main_code

when duplicate

when_duplicate_code

when none

when_none_code

BaseTrn1 , … , BaseTrnnFor each

endfor

………..……………………………………………………

The base transaction is optional and is used to indicate which table should be the
base table of the For each; that is, the table that will be accessed to return a set of
records. In the previous courses we always used it, placing a single value there.
In this example, we are indicating that we want to run through all the attractions,
and for each one we want to print the name of its country (for which it is also
necessary to access the Country table; we see that this join is located on the
server, that is, it will be resolved by the DBMS).

skip expression1 count expression2

order att1, att2, … , attn [when condition]

order att1, att2, … , attn [when condition]

order none [when condition]

unique att1, att2, … , attn

using DataSelector (parm1, parm2, … , parmn)

where condition [when condition]

where condition [when condition]

where att IN DataSelector (parm1, parm2, … , parmn)

blocking n

main_code

when duplicate

when_duplicate_code

when none

when_none_code

For each

endfor

BaseTrn1 , … , BaseTrnnFor each

endfor

For each Attraction

print info //CountryName

endfor

………..……………………………………………………

When no base transaction is specified, GeneXus must determine the table to
navigate, according to the attributes indicated in the other places. In the example,
as the only attribute inside the For each is CountryName, it will choose Country as
the base table. Therefore, it will print all the country names of that table and here
is a case where declaring a base transaction or not doing so changes the behavior.

skip expression1 count expression2

order att1, att2, … , attn [when condition]

order att1, att2, … , attn [when condition]

order none [when condition]

unique att1, att2, … , attn

using DataSelector (parm1, parm2, … , parmn)

where condition [when condition]

where condition [when condition]

where att IN DataSelector (parm1, parm2, … , parmn)

blocking n

main_code

when duplicate

when_duplicate_code

when none

when_none_code

For each

endfor

BaseTrn1 , … , BaseTrnnFor each

endfor

For each Attraction

print info //CountryName

endfor

………..……………………………………………………

One case that hasn't been mentioned so far is when we specify more than one
base transaction. There a Join or a Cartesian product will be made. In this example,
where each attraction has a country and city and so does each hotel, a Join will be
made.
An attraction will be shown with a hotel of the same country and city, then the
same attraction with another hotel of the same country and city, and so on until
using all the hotels of the same country and city of the attraction, and moving on
to the next attraction and doing the same thing again: it will be listed several
times, but the hotel will change every time (from those of the same country and
city). If they didn't have this relationship—for example, if the hotels didn't have a
country and city—each attraction would be listed with each hotel in the table.
Therefore, a Cartesian product will be made.

skip expression1 count expression2

order att1, att2, … , attn [when condition]

order att1, att2, … , attn [when condition]

order none [when condition]

unique att1, att2, … , attn

using DataSelector (parm1, parm2, … , parmn)

where condition [when condition]

where condition [when condition]

where att IN DataSelector (parm1, parm2, … , parmn)

blocking n

main_code

when duplicate

when_duplicate_code

when none

when_none_code

For each

endfor

BaseTrn1 , … , BaseTrnnFor each

endfor

For each Attraction

print info //CountryName

endfor

For each Attraction, Hotel

print info //AttractionName, HotelName

endfor

………..……………………………………………………

Let's move on to the optional skip clause combined with count. It allows skipping
the first n records (n being the result of evaluating this numeric expression) and
from there keeping the following m records (m being the result of this other
expression).

In this example, we skip the first 5 attractions of the query, in order to keep the
next 10.

This is known as data paging. Paging consists basically of dividing the information
resulting from a query into smaller blocks. Among other things, this reduces the
amount of data sent from the database server to the program.

In the navigation list an optimization will be shown, where we can see that this
paging will be done on the server; that is, the DBMS itself will do it. We don’t need
to worry about it.

skip expression1 count expression2

order att1, att2, … , attn [when condition]

order att1, att2, … , attn [when condition]

order none [when condition]

unique att1, att2, … , attn

using DataSelector (parm1, parm2, … , parmn)

where condition [when condition]

where condition [when condition]

where att IN DataSelector (parm1, parm2, … , parmn)

blocking n

main_code

when duplicate

when_duplicate_code

when none

when_none_code

BaseTrn1 , … , BaseTrnnFor each

endfor

For each Attraction
skip 5 count 10

print info //CountryName

endfor

………..……………………………………………………

We could then specify a list of conditional order clauses with a maximum of one
unconditional clause at the end, to sort the information to be queried and
returned. Conditions also allow us to play with conditional where clauses, in order
to sort by the same filter criteria, and to specify more optimized queries.

In this example, if the condition of the first order clause is met—that is, the
&country variable is not empty—it is sorted by CountryId and the following order
clause is not considered at all. Since in this case the where condition is the same,
the where will be applied and the country filter will then be optimized.

On the other hand, if the condition of the first order clause is not met, the second
order clause is looked into, and since it is unconditional it will apply. As the where
will not apply in this case, because the &country variable is empty, all attractions
will be displayed sorted by attraction name (and most likely not ordered by
country).

The order none clause, which we hadn't seen before, is written when we want to
leave the order to be applied undefined, which means that it will depend on the
platform and may even vary from one execution to the next.

Anyway, the order clauses that we write do not determine the exact execution
plan that the DBMS will choose, because other considerations are also taken into
account, precisely to optimize the database access. We will explore this topic in
more detail in another video.

We also know that the order clause plays a fundamental role when implementing

skip expression1 count expression2

order att1, att2, … , attn [when condition]

order att1, att2, … , attn [when condition]

order none [when condition]

unique att1, att2, … , attn

using DataSelector (parm1, parm2, … , parmn)

where condition [when condition]

where condition [when condition]

where att IN DataSelector (parm1, parm2, … , parmn)

blocking n

main_code

when duplicate

when_duplicate_code

when none

when_none_code

BaseTrn1 , … , BaseTrnnFor each

endfor

For each Attraction
order CountryId when not &country.IsEmpty()
order AttractionName
where CountryId >= &country when not &country.IsEmpty()

print info //AttractionName, CountryName

endfor

………..……………………………………………………

a control break between nested For each commands. In that case, it is not only used to order the
information but also, and more importantly, to establish the break criteria. There the order clause
cannot be conditional.

9

………..……………………………………………………

The using clause allows us to incorporate more orders and filters but centralized in
a Data Selector object, which makes it possible to send parameters to it. In this
way, we don’t have to repeat those same sort and filter criteria explicitly in each
query. As far as the For each is concerned, it’s as if they have been written
explicitly. It makes no difference. In fact, in the navigation list it will not be possible
to differentiate one form from the other. It will look exactly the same and there
will be no indication of the Data Selector.

For each

endfor

For each

endfor

skip expression1 count expression2

order att1, att2, … , attn [when condition]

order att1, att2, … , attn [when condition]

order none [when condition]

unique att1, att2, … , attn

using DataSelector (parm1, parm2, … , parmn)

where condition [when condition]

where condition [when condition]

where att IN DataSelector (parm1, parm2, … , parmn)

blocking n

main_code

when duplicate

when_duplicate_code

when none

when_none_code

BaseTrn1 , … , BaseTrnn

For each Attraction
using AttractionsByCountry(&country)

print info //AttractionName, CountryName
endfor

For each Attraction
order CountryName when not &country.IsEmpty()
order AttractionName
where CountryName >= &country when not &country.IsEmpty()

print info //AttractionName, CountryName
endfor

………..……………………………………………………

This means that order, where, and using clauses can coexist without any problem.
For the generated program, there will be no difference between this For each and
this other one.

skip expression1 count expression2

order att1, att2, … , attn [when condition]

order att1, att2, … , attn [when condition]

order none [when condition]

unique att1, att2, … , attn

using DataSelector (parm1, parm2, … , parmn)

where condition [when condition]

where condition [when condition]

where att IN DataSelector (parm1, parm2, … , parmn)

blocking n

main_code

when duplicate

when_duplicate_code

when none

when_none_code

BaseTrn1 , … , BaseTrnnFor each

endfor

For each

endfor

For each Attraction
using AttractionsByCountry(&country)
where CategoryName <> “Monument”

print info //AttractionName, CountryName
endfor

For each Attraction
order CountryName when not &country.IsEmpty()
order AttractionName
where CountryName >= &country when not &country.IsEmpty()
where CategoryName <> “Monument”

print info //AttractionName, CountryName
endfor

………..……………………………………………………

The difference comes up when the Data Selector is used in another way, this time
in a special way: when it is used as an executable query.

This happens when we want to filter indicating that we only want to keep the
records of the extended table of the For each for which the value of a certain
attribute is among those returned by this independent query.

In the example, when we want to run through the categories table keeping only
those that are among the attraction categories of the independent query of the
Data Selector.
The DataSelector query, because of the attributes involved, is clearly of the
attractions of countries with names after the filter (if not empty, if empty, all). In
this case, we should consider the DataSelector as if it were another For each. This
is why the attributes inside the Data Selector for this case will not have any
relevance for the For each where it is being used. Thus, the base table of the For
each will be Category, and that of the query of the Attraction Data Selector.

skip expression1 count expression2

order att1, att2, … , attn [when condition]

order att1, att2, … , attn [when condition]

order none [when condition]

unique att1, att2, … , attn

using DataSelector (parm1, parm2, … , parmn)

where condition [when condition]

where condition [when condition]

where att IN DataSelector (parm1, parm2, … , parmn)

blocking n

main_code

when duplicate

when_duplicate_code

when none

when_none_code

BaseTrn1 , … , BaseTrnnFor each

endfor

For each Category
where CategoryId IN AttractionsByCountry(&country)

print info //CategoryName
endfor

………..……………………………………………………

We also saw the unique clause, so that if the indicated attributes are repeated for
a set of records in the For each, only one is taken for processing in the body of the
For each; that is, in the main code.

Here we are running through the table of attractions, grouping them by category
ID and only keeping one record from the group, printing its category name.

We also saw that this clause was extremely useful when in the code of the For
each we wanted to do an aggregation on that set of repeated records for those
unique attributes. Something that otherwise we could not achieve (having the For
each and the aggregation formula working on the same table). In this example, the
For each runs through Attraction, and so does the Count formula. In addition,
since we have specified the unique clause by CategoryId, the count will be made
for the set of records with the same CategoryId in which it is positioned each time.

skip expression1 count expression2

order att1, att2, … , attn [when condition]

order att1, att2, … , attn [when condition]

order none [when condition]

unique att1, att2, … , attn

using DataSelector (parm1, parm2, … , parmn)

where condition [when condition]

where condition [when condition]

where att IN DataSelector (parm1, parm2, … , parmn)

blocking n

main_code

when duplicate

when_duplicate_code

when none

when_none_code

BaseTrn1 , … , BaseTrnnFor each

endfor

For each

endfor

For each Attraction
unique CategoryId

print info //CategoryName
endfor

For each Attraction
unique CategoryId

&qty = count(AttractionName)
print info //CategoryName &qty

endfor

………..……………………………………………………

In the main code block we program what we want to do with each record of the
base table that has passed the filters (of course, if attributes of the extended table
are used there, these records are automatically accessed and used).

What can be programmed here includes writing another For each command,
nested...

skip expression1 count expression2

order att1, att2, … , attn [when condition]

order att1, att2, … , attn [when condition]

order none [when condition]

unique att1, att2, … , attn

using DataSelector (parm1, parm2, … , parmn)

where condition [when condition]

where condition [when condition]

where att IN DataSelector (parm1, parm2, … , parmn)

blocking n

main_code

when duplicate

when_duplicate_code

when none

when_none_code

For each

endfor

For each Attraction
print info2 // AttractionName, CountryName, CityName

endfor

BaseTrn1 , … , BaseTrnn

For each Category
...

print info //CategoryName

endfor

………..……………………………………………………

...an invocation to a subroutine or...

skip expression1 count expression2

order att1, att2, … , attn [when condition]

order att1, att2, … , attn [when condition]

order none [when condition]

unique att1, att2, … , attn

using DataSelector (parm1, parm2, … , parmn)

where condition [when condition]

where condition [when condition]

where att IN DataSelector (parm1, parm2, … , parmn)

blocking n

main_code

when duplicate

when_duplicate_code

when none

when_none_code

For each

endfor

BaseTrn1 , … , BaseTrnn

For each Category
...

print info //CategoryName

endfor

Do ‘Something’
print info3

………..……………………………………………………

...to a procedure, which, when executed, will return to whatever follows the
invocation.

skip expression1 count expression2

order att1, att2, … , attn [when condition]

order att1, att2, … , attn [when condition]

order none [when condition]

unique att1, att2, … , attn

using DataSelector (parm1, parm2, … , parmn)

where condition [when condition]

where condition [when condition]

where att IN DataSelector (parm1, parm2, … , parmn)

blocking n

main_code

when duplicate

when_duplicate_code

when none

when_none_code

For each

endfor

BaseTrn1 , … , BaseTrnn

For each Category
...

print info //CategoryName

endfor

MyProcedure(CategoryId)
print info3

………..……………………………………………………

If no record passes the filters, then the code specified under the when none clause
will be executed—if it was specified, of course.

In this example, it will be when there is no attraction from a country of that name.

Since it is assumed that nothing was done with the data in the extended table of
the For each when this clause was executed, here we are not positioned in any
record, so....

skip expression1 count expression2

order att1, att2, … , attn [when condition]

order att1, att2, … , attn [when condition]

order none [when condition]

unique att1, att2, … , attn

using DataSelector (parm1, parm2, … , parmn)

where condition [when condition]

where condition [when condition]

where att IN DataSelector (parm1, parm2, … , parmn)

blocking n

main_code

when duplicate

when_duplicate_code

when none

when_none_code

For each

endfor

BaseTrn1 , … , BaseTrnn

For each Attraction
where CountryName = “France”

print info //AttractionName, CategoryName
when none

print infoNone
endfor

//”No attractions from France”

………..……………………………………………………

...if attributes are named there, where will they be taken from? It only makes
sense to name attributes if they have already been instantiated (for example, in
the parm rule of the object where this For each is located....

skip expression1 count expression2

order att1, att2, … , attn [when condition]

order att1, att2, … , attn [when condition]

order none [when condition]

unique att1, att2, … , attn

using DataSelector (parm1, parm2, … , parmn)

where condition [when condition]

where condition [when condition]

where att IN DataSelector (parm1, parm2, … , parmn)

blocking n

main_code

when duplicate

when_duplicate_code

when none

when_none_code

For each

endfor

BaseTrn1 , … , BaseTrnn

For each Attraction
where CountryName = “France”

print info //AttractionName, CategoryName
when none

print infoNone
endfor

//CategoryName

parm(in:CategoryName);

………..……………………………………………………

... or in another For each in which this one is nested).

skip expression1 count expression2

order att1, att2, … , attn [when condition]

order att1, att2, … , attn [when condition]

order none [when condition]

unique att1, att2, … , attn

using DataSelector (parm1, parm2, … , parmn)

where condition [when condition]

where condition [when condition]

where att IN DataSelector (parm1, parm2, … , parmn)

blocking n

main_code

when duplicate

when_duplicate_code

when none

when_none_code

For each

endfor

BaseTrn1 , … , BaseTrnn

For each Attraction
where CountryName = “France”

print info //AttractionName, CategoryName
when none

print infoNone
endfor

//CategoryName

For each Category

endfor

………..……………………………………………………

Of course, here we can write another query (another For each), use an inline
formula, etc., but it is as if they were written after the For each.

skip expression1 count expression2

order att1, att2, … , attn [when condition]

order att1, att2, … , attn [when condition]

order none [when condition]

unique att1, att2, … , attn

using DataSelector (parm1, parm2, … , parmn)

where condition [when condition]

where condition [when condition]

where att IN DataSelector (parm1, parm2, … , parmn)

blocking n

main_code

when duplicate

when_duplicate_code

when none

when_none_code

For each

endfor

BaseTrn1 , … , BaseTrnn

For each Attraction
where CountryName = “France”

print info //AttractionName, CategoryName
when none

endfor

For each Country.City
print info2 //CountryName, CityName

endfor

For each Attraction
where CountryName = “France”

print info //AttractionName, CategoryName
endfor

For each Country.City
print info2 //CountryName, CityName

endfor

………..……………………………………………………

If the For each is inside a procedure, and only in that case, in the main code it will
also be possible to assign a value to one or several attributes, in order to update
the record of the base table and the corresponding record(s) of the extended
table.

Here we update the AttractionName attribute of the record of the base table in
which we are in each iteration, and the CategoryName attribute of the associated
record of the Category table, which is part of the extended one.

skip expression1 count expression2

order att1, att2, … , attn [when condition]

order att1, att2, … , attn [when condition]

order none [when condition]

unique att1, att2, … , attn

using DataSelector (parm1, parm2, … , parmn)

where condition [when condition]

where condition [when condition]

where att IN DataSelector (parm1, parm2, … , parmn)

blocking n

main_code

when duplicate

when_duplicate_code

when none

when_none_code

For each

endfor

BaseTrn1 , … , BaseTrnn

For each Attraction
where CountryName = “France”

endfor

AttractionName = “France “ + AttractionName
CategoryName = “France Attractions”

Procedure Object

………..……………………………………………………

We can also write a Delete command to delete the record on which we are
positioned (and it only deletes the record from the base table, without performing
referential integrity checks).

skip expression1 count expression2

order att1, att2, … , attn [when condition]

order att1, att2, … , attn [when condition]

order none [when condition]

unique att1, att2, … , attn

using DataSelector (parm1, parm2, … , parmn)

where condition [when condition]

where condition [when condition]

where att IN DataSelector (parm1, parm2, … , parmn)

blocking n

main_code

when duplicate

when_duplicate_code

when none

when_none_code

For each

endfor

BaseTrn1 , … , BaseTrnn

For each Attraction
where CountryName = “France”

endfor

Delete

Procedure Object

………..……………………………………………………

Of course, we can also write a new command to insert a record into a table, but
this goes beyond the behavior of the For each, which controls both updates and
deletions.

skip expression1 count expression2

order att1, att2, … , attn [when condition]

order att1, att2, … , attn [when condition]

order none [when condition]

unique att1, att2, … , attn

using DataSelector (parm1, parm2, … , parmn)

where condition [when condition]

where condition [when condition]

where att IN DataSelector (parm1, parm2, … , parmn)

blocking n

main_code

when duplicate

when_duplicate_code

when none

when_none_code

For each

endfor

BaseTrn1 , … , BaseTrnn

For each Attraction
where CountryName = “France”

endfor

new
CategoryName = “Famous Landmark”

endnew

Procedure Object

………..……………………………………………………

For either of these two cases we have the blocking clause. It allows the operations
to be performed in a buffer and when the n records indicated in the clause are
processed (in this example 10), only then are the operations performed on the
database. That is, the database is accessed only once to process the n records that
are being updated or deleted, thus improving performance.

As expected, this same clause is also available in the New command.

skip expression1 count expression2

order att1, att2, … , attn [when condition]

order att1, att2, … , attn [when condition]

order none [when condition]

unique att1, att2, … , attn

using DataSelector (parm1, parm2, … , parmn)

where condition [when condition]

where condition [when condition]

where att IN DataSelector (parm1, parm2, … , parmn)

blocking n

main_code

when duplicate

when_duplicate_code

when none

when_none_code

For each

endfor

BaseTrn1 , … , BaseTrnn

For each Attraction
where CountryName = “France”
blocking 10

endfor

AttractionName = “France “ + AttractionName
CategoryName = “France Attractions”

Procedure Object

………..……………………………………………………

Finally, the when duplicate clause is used when you want to update attributes in
the body of the For each that are, in particular, candidate keys, so their values
must not be repeated.

If in the main code the value of one of these attributes is being modified (for the
record in which the program is positioned in that iteration), assigning it a value
that already exists for another record in the table, then the update will not be
allowed (remember that the unique index is used to perform this control).

Let's imagine for this case that in the Category table there already exists a record
with CategoryName “France Attractions,” and that there is a unique index by
CategoryName. So, for attraction 1, which is from France, when trying to update
the value of its CategoryName, which is Museum, to “France Attractions,” since a
uniqueness control will be made, the check will fail due to a duplicated key. There
is already a record with the value 4.

If the developer programmed a when duplicate clause, that is where he or she
indicates what should be done in that case. If the clause is not written, nothing will
be done with that record that was intended to be updated and it moves on to the
next iteration of the For each, where in this case the same will happen when trying
to modify the category name of the Eiffel Tower, which is 2.

If the when duplicate clause is specified, then although we may think that we are
still positioned in the record that caused the problem, we are no longer positioned
to update, so if we want to update the attribute or another one with another
value, we have to write a For each to indicate it.

skip expression1 count expression2

order att1, att2, … , attn [when condition]

order att1, att2, … , attn [when condition]

order none [when condition]

unique att1, att2, … , attn

using DataSelector (parm1, parm2, … , parmn)

where condition [when condition]

where condition [when condition]

where att IN DataSelector (parm1, parm2, … , parmn)

blocking n

main_code

when duplicate

when_duplicate_code

when none

when_none_code

For each

endfor

BaseTrn1 , … , BaseTrnn

For each Attraction
where CountryName = “France”

endfor

AttractionName = “France “ + AttractionName
CategoryName = “France Attractions”

CategoryId CategoryName

1 Museum

2 Monument

3 Tourist site

4 France Attractions

5 Famous Landmark

AttractionId AttractionName CountryId CityId CategoryId

1 Louvre Museum 2 1 1

2 The Great Wall 3 1 2

3 Eiffel Tower 2 1 2

4 Forbidden city 3 1 2

5 Christ the Redeemer 1 2 2

when duplicate

For each
AttractionName = “France “ + AttractionName

endfor

Procedure Object

………..……………………………………………………

In this case, we want the first update (which will never fail) to be performed, and... for the first
attraction of France, it fails due to a duplicated one...

25

………..……………………………………………………

…and executes this section. Next, for the second and last attraction in France: it
tries to update and also fails...

skip expression1 count expression2

order att1, att2, … , attn [when condition]

order att1, att2, … , attn [when condition]

order none [when condition]

unique att1, att2, … , attn

using DataSelector (parm1, parm2, … , parmn)

where condition [when condition]

where condition [when condition]

where att IN DataSelector (parm1, parm2, … , parmn)

blocking n

main_code

when duplicate

when_duplicate_code

when none

when_none_code

For each

endfor

BaseTrn1 , … , BaseTrnn

For each Attraction
where CountryName = “France”

endfor

AttractionName = “France “ + AttractionName
CategoryName = “France Attractions”

CategoryId CategoryName

1 Museum

2 Monument

3 Tourist site

4 France Attractions

5 Famous Landmark

AttractionId AttractionName CountryId CityId CategoryId

1 Louvre Museum 2 1 1

2 The Great Wall 3 1 2

3 Eiffel Tower 2 1 2

4 Forbidden City 3 1 2

5 Christ the Redeemer 1 2 2

when duplicate

For each
AttractionName = “France “ + AttractionName

endfor

AttractionId AttractionName CountryId CityId CategoryId

1 France Louvre Museum 2 1 1

2 The Great Wall 3 1 2

3 Eiffel Tower 2 1 2

4 Forbidden City 3 1 2

5 Christ the Redeemer 1 2 2

Procedure Object

………..……………………………………………………

…then it runs this section, and the table will look like this.

skip expression1 count expression2

order att1, att2, … , attn [when condition]

order att1, att2, … , attn [when condition]

order none [when condition]

unique att1, att2, … , attn

using DataSelector (parm1, parm2, … , parmn)

where condition [when condition]

where condition [when condition]

where att IN DataSelector (parm1, parm2, … , parmn)

blocking n

main_code

when duplicate

when_duplicate_code

when none

when_none_code

For each

endfor

BaseTrn1 , … , BaseTrnn

For each Attraction
where CountryName = “France”

endfor

AttractionName = “France “ + AttractionName
CategoryName = “France Attractions”

CategoryId CategoryName

1 Museum

2 Monument

3 Tourist Site

4 France Attractions

5 Famous Landmark

AttractionId AttractionName CountryId CityId CategoryId

1 Louvre Museum 2 1 1

2 The Great Wall 3 1 2

3 Eiffel Tower 2 1 2

4 Forbidden City 3 1 2

5 Christ the Redeemer 1 2 2

when duplicate

For each
AttractionName = “France “ + AttractionName

endfor

AttractionId AttractionName CountryId CityId CategoryId

1 France Louvre Museum 2 1 1

2 The Great Wall 3 1 2

3 Eiffel Tower 2 1 2

4 Forbidden City 3 1 2

5 Christ the Redeemer 1 2 2

Procedure Object

AttractionId AttractionName CountryId CityId CategoryId

1 France Louvre Museum 2 1 1

2 The Great Wall 3 1 2

3 France Eiffel Tower 2 1 2

4 Forbidden City 3 1 2

5 Christ the Redeemer 1 2 2

………..……………………………………………………

In short, all the clauses prior to the main code or body of the For each are used to
filter the records on which the main code will be executed, to sort them, group
them based on repeated values, and process them once, or to indicate that they
will be accessed as a block when you want to update and/or delete them.

Then, for each one of the records that pass these filters or the grouping, and
according to the determined order, the main code will be executed.

From the attributes used in all these clauses as well as within the main code, it is
often necessary to access records from other tables of the extended table, but not
all of them.
For performance reasons, only those will be retrieved and this has some
consequences.

skip expression1 count expression2

order att1, att2, … , attn [when condition]

order att1, att2, … , attn [when condition]

order none [when condition]

unique att1, att2, … , attn

using DataSelector (parm1, parm2, … , parmn)

where condition [when condition]

where condition [when condition]

where att IN DataSelector (parm1, parm2, … , parmn)

blocking n

main_code

when duplicate

when_duplicate_code

when none

when_none_code

For each

endfor

BaseTrn1 , … , BaseTrnn

………..……………………………………………………

In this example, the TripAttraction table will be run. It corresponds to the second
level of the Trip transaction, but Attraction will be accessed to sort by
AttractionName and because its value has to be printed in the output. Also,
because from there CountryCity will be accessed in order to access Country to be
able to filter by CountryName.
In addition, Trip will be accessed in order to filter by TripDate.
But it is not necessary at all to access Category. Therefore, if in the parm rule we
receive in the CategoryName attribute, contrary to what we might think, that filter
will not be applied. Why? Because inside the For each the Category table is not
accessed at all. So, after determining all the navigations of the object where this
For each is located, when the implicit filter that comes from the parm rule is going
to be added, inspecting each of the queries, no relationship is found for this For
each and it is not added.

skip expression1 count expression2

order att1, att2, … , attn [when condition]

order att1, att2, … , attn [when condition]

order none [when condition]

unique att1, att2, … , attn

using DataSelector (parm1, parm2, … , parmn)

where condition [when condition]

where condition [when condition]

where att IN DataSelector (parm1, parm2, … , parmn)

blocking n

main_code

when duplicate

when_duplicate_code

when none

when_none_code

For each

endfor

BaseTrn1 , … , BaseTrnn

For each Trip.Attraction
order AttractionName
where CountryName = “France”
where TripDate >= &today

print info //AttractionName, TripAttracitionVisitTime

endfor

parm(in: CategoryName);

………..……………………………………………………

For the case in which we are in a procedure and in the main code we want to
update attributes that are candidate keys, the following happens:
Let's suppose that we are processing the record n that passes the filters; that is,
we are in iteration n of the For each, where the code for the previous n-1 records
was already executed, and for that record or one of its related records by
extended table we are trying to update one of its attributes that is a candidate key
by giving it a repeated value. Then if there is no when duplicate clause, the update
is not performed and it moves on to the next record of the iteration, n+1. But if
the when duplicate clause is specified, it is executed. Then the next record of the
For each, n+1, is processed.

skip expression1 count expression2

order att1, att2, … , attn [when condition]

order att1, att2, … , attn [when condition]

order none [when condition]

unique att1, att2, … , attn

using DataSelector (parm1, parm2, … , parmn)

where condition [when condition]

where condition [when condition]

where att IN DataSelector (parm1, parm2, … , parmn)

blocking n

main_code

when duplicate

when_duplicate_code

when none

when_none_code

For each

endfor

BaseTrn1 , … , BaseTrnn

For each Attraction
where CountryName = “France”

endfor

AttractionName = “France “ + AttractionName
CategoryName = “France Attractions”

when duplicate

For each
AttractionName = “France “ + AttractionName

endfor

Procedure Object

………..……………………………………………………

The code in the when none clause will only be executed when there was no
iteration of the For each since no record passed the filters (or the table was
empty). That is, if this code is executed, it is because none of these was executed
for any record.

skip expression1 count expression2

order att1, att2, … , attn [when condition]

order att1, att2, … , attn [when condition]

order none [when condition]

unique att1, att2, … , attn

using DataSelector (parm1, parm2, … , parmn)

where condition [when condition]

where condition [when condition]

where att IN DataSelector (parm1, parm2, … , parmn)

blocking n

main_code

when duplicate

when_duplicate_code

when none

when_none_code

For each

endfor

BaseTrn1 , … , BaseTrnn

………..……………………………………………………

As we have just seen, the attributes that appear in the code of when duplicate or
when none, as well as those that appear inside the Data Selector when it is
executed as an independent query, are not considered at all when determining
the navigation of the For each.

This is especially important when GeneXus must determine the base table of the
For each, because no base transaction was placed.

This is the end of this summary of essential concepts.

skip expression1 count expression2

order att1, att2, … , attn [when condition]

order att1, att2, … , attn [when condition]

order none [when condition]

unique att1, att2, … , attn

using DataSelector (parm1, parm2, … , parmn)

where condition [when condition]

where condition [when condition]

where att IN DataSelector (parm1, parm2, … , parmn)

blocking n

main_code

when duplicate

when_duplicate_code

when none

when_none_code

For each

endfor

BaseTrn1 , … , BaseTrnn

………..……………………………………………………

training.genexus.com

wiki.genexus.com

training.genexus.com/certifications

33

