
Loading compound data types

GeneXus object: Data Provider

In previous videos we have seen the concept of structured data type, the
possibility of defining them as simple or collection data types, and some
examples of manual loading, although we have mentioned that there is
another, higher level way to perform the loading.



New requirement: Ranking of countries

Remember that we still have to solve a request made by the Travel
Agency to implement a ranking of countries according to the number of
tourist attractions they offer.

In other words, we must show all the countries, ordered from highest to
lowest, by that amount.



Id: 1
Name: Brazil
AttractionsQuantity:  1

Collection structure

Id: 2
Name: France
AttractionsQuantity:  2

Id: 3
Name: China
AttractionsQuantity:  4

Id: 4
Name: United States
AttractionsQuantity:  1

COUNTRY table

Data Provider

To load the data from the collection we will use a GeneXus object of
Data Provider type.

This object allows us to load a data structure, for example from
information obtained from the database, and returns this structure
already loaded.



Drag  the SDT to the source of 

the Data Provider
1

2 3

New requirement: Ranking of countries

We create a Data Provider object and name it
RankingCountriesWithAttractionsQty.

GeneXus places us in the Source section of the Data Provider.

This is where we will declare how we want the data to be loaded into
the collection to be returned. Note how easy it is to declare the
loading: What we are going to do, from the KB Explorer window, is
simply drag the SDTCountries structured data type over the source
of the Data Provider.

When doing so, GeneXus automatically writes several lines of text.

If we open the Data Provider properties, we can see that GeneXus
assigned the name of the SDTCountries collection to the Output
property. This means that the Data Provider will return a collection of
SDTCountries structured data type, loaded with data.

Since SDTCountries is already a collection, it isn't necessary to
configure the Collection property of the Data Provider to True.

It should be mentioned that if this Collection property is set to True,
the Data Provider will return a collection of the SDT indicated in the
Output property, regardless of how complex its structure may be.



Substructure of the
ítem.

Structured data type name

New requirement: Ranking of countries

see what GeneXus wrote in the source.

We recognize the name of the SDTCountries structured data type,
which is a collection. And then between brackets is the substructure of
the collection item.



New requirement: Ranking of countries

Let's compare this with the structure of the SDT:

We see that GeneXus represented the structure of SDTCountries in text
form. And left the members ID, Name, and AttractionsQuantity of the
substructure of SDTCountries ready to load their value.



Name of the transaction whose 
base table we want the Data 

Provider to go over

Indicate the attributes or calculations with which the elements of the collection are loaded:

New requirement: Ranking of countries

We want to load the collection from the content of the COUNTRY table.

Then, we must instruct the Data Provider to run through the table. To
this end we use the From clause, and next to it we will indicate the
name of the transaction whose base table we want to run, as we have
done to indicate the base transaction of the For Each command.
So in this case we write: From Country

If the transaction had more than one level, then in order to specify a
certain level, associated with a certain base table that we want to
navigate, we would have to write the name of the transaction, period,
name of the level.

Then, we will indicate that we want to load the ID element with the
value of the CountryId attribute, load the Name item with the value of
the CountryName attribute, and load the AttractionsQuantity item with
the number of tourist attractions in each country, so to this member we
assign the result of the inline formula Count(AttractionName).

Let's review a concept we have already studied: this inline formula will
navigate the ATTRACTION table by the attribute we have indicated in
brackets. In addition, the table navigated by the Data Provider
COUNTRY , and the table navigated by the formula ATTRACTION
have a common attribute that is CountryId; this formula will count the
attractions of the country navigated by the Data Provider each time.



The base table of the Data 
Provider is COUNTRY

New requirement: Ranking of countries

So what we have done is simply: to declare a table to be navigated by
the Data Provider, and for each record accessed, we have indicated the
values we want to assign to a new item in the country collection.

Since the Data Provider runs through the COUNTRY table, we usually
say that the base table of the Data Provider is COUNTRY.

The final result will be that the data of all the countries in the database,
each with its number of attractions, will have been stored in the
collection in memory.



3) In the source of the procedure, invoke the Data Provider:

The variable &Countries
receives what the Data 

Provider returns. 

1) Create a procedure object

2) Define the variables:

New requirement: Ranking of countries

Remember that we already have in our knowledge base a procedure
named CountriesRanking, so we are going to modify it.

First, in the variables section we will define a variable &Countries
based on the SDTCountries data type.

We then go to the procedure Source, and from here, to this Countries
variable, we assign the result returned by the Data Provider that we
have just created.

In this way we are invoking the Data Provider and it will return a
collection of countries, which will be loaded in the variable
&Countries.



To implement a ranking, we must order the collection from highest to lowest quantity of attractions We use the Sort
method:

SDT field to sort the collection

The brackets within parentheses indicates the reverse order, that is, from 
high to low.

New requirement: Ranking of countries

Remember that the requirement is to view a ranking of all countries
ordered from highest to lowest according to the number of attractions
they have registered.

Therefore, we still need to order the collection we got loaded. That is
to say, to order the items of the collection of countries, before it is
shown, from highest to lowest according to the number of attractions
they have registered.

To solve this we have the Sort method. The syntax is as follows:

&Countries.Sort CountryAttractionsQuantity

But in this way the collection of countries will be ordered from lowest
to highest by the number of attractions and we need it to be ordered
from highest to lowest, because we want to implement a ranking.

To indicate the reverse order, inside the quotes we will add straight
parentheses.



To go over a collection stored in memory ad print each element in the printblock,  we have the 
in structure

New requirement: Ranking of countries

Once the collection is sorted, we must run through it to show it in
the printblock, so we will need to define a variable based on the
element of the collection.

So we define the &oneCountry variable based on the data type
corresponding to the element in the collection.

Then we declare the structure: For &oneCountry in &Countries

.



Insert the variables in the Country printblock

New requirement: Ranking of countries

Now let's go to the layout and insert the &oneCountry variable. 



New requirement: Ranking of countries

To see the ranking running we select the Run option.

And we see the PDF list with all the countries that were registered in the
database, each one with its corresponding number of attractions and in
the requested order.



Where clause

Optionally, Data Providers accept the Where clause to filter, as well as
the For Each command... for example, if we don't want the list to
include France, how would we go about it?

We can add the Where CountryName clause ... different ... from France.

14



Another option to implement the requirement

Another way to implement this same requirement is from the SDT set as
simple and not as a collection.
In this case, the collection must be built by the Data Provider, and for
that its Collection property must be set to True.

In this way, we're telling the Data Provider to return a collection of
elements of SDTCountry type. Also, note that the Collection Name
property is displayed and a name has been automatically assigned to
the collection.

When invoking the Data Provider from the procedure source, we must
define the &CountriesCollection variable as a collection of the
structured data type SDTCountry.

Note that the syntax used to invoke the Data Provider does not change,
only that the variable that receives the result is based on a simple SDT.
Therefore, in order to receive the collection returned by the Data
Provider we must declare it as a collection by selecting the IsCollection
check box.

15



Summarizing

Data Provider

In sum, we have two ways for a Data Provider to return a collection of
elements:

One of them is to define a structured data type of collection type; after
dragging it to the Data Provider source, it is automatically configured to
return a collection of that type.

The other option is to define a structured data type that is not a
collection, and then setting the Data Provider properties to have it build
the collection.

In this way we have seen the power of Data Providers to load
information into a data structure in memory. We saw how easy it was to
declare the data we wanted to load, with GeneXus solving everything
necessary to carry it out.

16



training.genexus.com
wiki.genexus.com


