
Procedures and listings

Command to access the database

We will see several possible objectives.

Procedure object

✓ It allows defining processes to access and navigate tables

Procedure object

✓ We may need to navigate the records of a certain table that comply with certain conditions,
and for these records update a certain attribute with a given value.

AttractionId AttractionName Visites

1 Louvre Museum 8245

2 The Great Wall 10122

3 Eiffel Tower 11734

Attraction table

Procedure object

✓ Navigate certain table and print all its data in a PDF list,
ordered by some criterion.

AttractionId AttractionName CountryId

1 Louvre Museum 2

2 The Great Wall 3

3 Eiffel Tower 2

Attraction table

Procedure object

✓ Define specific processes that contain searches, calculations and database updates,
and print that information.

We solve all this by creating Procedures in our knowledge base
(GeneXus Procedure object).

Procedure object

the travel agency has to offer, in alphabetical order.

Example: list data in PDF format

✓ If you wish: list in a PDF file all the tourist attractions of the travel agency, in alphabetical order.

Fixed content
(titles)

Variable content
(data)

Once the object has been created, we see that GeneXus takes us to a
section called Source. Here is where we'll type commands and orders
that enable the procedure to meet its objective, which in this case is to
print a list of tourist attractions.

Now let's look at this other section called Layout. The layout is the place
where the output is designed; that is to say, where we set how we want
to view our data.

Procedure: Source y Layout

✓ Source: for the instructions to be executed

✓ Layout: for designing the output

It is made up of printblocks and inside the printblocks we will include
what we want to show.

We may want to show titles, lines, rectangles, images, as well as
attribute or variable values. To do so, we will drag them to the
printblock from the toolbar.

Note that a printblock is automatically included in the layout.

With this printblock we can display a title or today's date, or we can add
more printblocks in this section, as we will see.

Layout

✓ It is made up of printblocks

✓ One already appears by default. It is called printBlock1.

Layout

✓ Printblocks for our listing:

Title

Column
Titles

Attractions

We may define three printblocks:
• one with the list title and its image, which could be named Title
• another one to show the column titles with the line below them, that
could be named ColumnTitles
• and a third printblock where we will display the tourist attraction
details, which will be named Attractions.

So, let's start to define this.

We can use the printblock that was created when we created the
procedure object for the title and image.

Let's start by the title. To do so, from the Toolbox we drag the Text
Block control edit its properties in the Text property we type
AtractionsList . We also change its color, MidnightBlue and font... Size

14, Bold=True, and select its position in relation to the margins.

We will give this printblock a clear name that represents what is being
displayed. To do so, we select the printblock properties and edit its
Name property by assigning it the name .

Now, let's insert the image with the plane on the left by dragging the
Image control from the Toolbox and dropping it where we want it to be
placed. Doing this

Layout

✓ 1. PrintBlock: Title

a window is opened for us to select one of the images existing in the
knowledge base, or add a new one, for example, by importing it from a
file.

The from button allows us to explore our file system and
select the image, which will be created as a GeneXus object of Image
type with the image filename as default name. From then on we will be
able to freely use the image in our KB.

Images in the Knowledge Base

Note that from KB Explorer/Customization/Images we can access all the
images in the KB, among which is the image of the plane.

Images in the Knowledge Base

Layout

✓ 2. PrintBlock: ColumnTitles

Now we will create another printblock to include the column titles, with
a line below them. If we right-click on a certain printblock and select the

Printblock option a new printblock will be inserted below it.

The way in which printblocks are ordered in the Layout is not important
because it doesn't mean that they must be printed in that order. We
determine when to print each printblock in the code that we type in the
procedure Source. We will see it soon.

Now we will give the name ColumnTitles to this new printblock.
And in this new printblock we will insert a TextBlock for every text that
we want to show as column title.

So, from the Toolbox we drag the textblock, and in its Text property we
type . We add another Textblock, and in its Text property we enter
the text . And create another Textblock to show the text

. Lastly, we create a Textblock for the title .

We place the controls in the positions we want... They can be aligned by
selecting them all at once and then: Menu/Layout/Align/Bottom.

Lastly, we will insert a line below these column titles. So, we return to
the Toolbox and drag a control.
We drag it from here... and give it the length we want...

Layout

✓ 3. PrintBlock: Attractions

We still have to add the third Printblock that we had mentioned, to show
the tourist attraction details. So, we insert a new Printblock and call it:
Attractions.

Since the data is stored in attributes, we return to the Toolbox, select a

In the window that is opened we choose a variable or attribute to show
in the control. We see that in addition to &today, a procedure has these
other system variables.

We can also insert attributes in a printblock from the Insert / Attribute
option.

Source

✓ Commands:

• Print to print a printblock, and

• For each to go over a table and its extended table to do something with each data record.

AttractionId + AttractionName +
CountryName + AttractionPhoto

The design of how the data will be displayed in the list is ready.

Now we have to type the necessary code to obtain the right information from
the database and have printblocks printed in the order we want.
Let's go to the Source option...

The first thing we want to print is the report title, so we type . Since
the instructions we type in the Source will be executed downwards, this
instruction will be the first one to be executed. With it, we're sending the
contents of the printblock called Title -the list's title- to print. The Print
command must always be followed by the name of a printblock defined in the
Layout.

Next, we want to print the column titles, so we have to give the order to print
the ColumnTitles printblock

With these two instructions we have given the order to print the fixed part of
the report; that is to say, the part that will not change with the data: the part
containing the report title and the plane image, and the part containing the
column titles.

Now we have to print the attractions' data that is stored in the database. To do
so, we must access the physical table that has this information stored; that is to
say, the table associated with the Attraction transaction.

The command that allows us to access a physical table is the
command. The physical table that is accessed is called base table of the For
Each command.

So we type the For Each command... Next to it: Attraction. Why do we type Attraction
next to the For Each command?
Because it is the name of the attraction whose associated physical table we want to
navigate

and now... since we want to print, for every tourist attraction, the content of the
attributes AttractionId, AttractionName, CountryName, and AttractionPhoto we type the
order to print the printblock that contains them. We type Print Attractions.

In this way, we have told GeneXus to navigate the ATTRACTION
physical table, which corresponds to the Attraction transaction.

Since within the For Each command we have invoked a printblock
containing attributes of the ATTRACTION and COUNTRY tables,
applying the concept of extended table, for each navigated attraction,
the COUNTRYCITY table will be accessed, and from it the COUNTRY
table, to obtain the name of the country where this attraction is located.

For each command

AttractionId AttractionName CountryId CityId

1 Louvre Museum 2 1

2 The Great Wall 3 1

3 Eiffel Tower 2 1

CountryId CityId CityName

1 1 Rio de Janeiro

1 2 Sao Paulo

2 1 Paris

3 1 Beijing

3 2 Shanghai

3 3 Hong Kong

CountryId CountryName

1 Brazil

2 France

3 China

Attraction
table

CountryCity
table

Country
table

For each

AttractionId + AttractionName +
CountryName + AttractionPhoto

In this way, we have told GeneXus to navigate the ATTRACTION
physical table, which corresponds to the Attraction transaction.

Since within the For Each command we have invoked a printblock
containing attributes of the ATTRACTION and COUNTRY tables,
applying the concept of extended table, for each navigated attraction,
the COUNTRYCITY table will be accessed, and from it the COUNTRY
table, to obtain the name of the country where this attraction is located.

Base Transaction Base Table

AttractionId AttractionName CountryId CityId

1 Louvre Museum 2 1

2 The Great Wall 3 1

3 Eiffel Tower 2 1

CountryId CityId CityName

1 1 Rio de Janeiro

1 2 Sao Paulo

2 1 Paris

3 1

CountryId CountryName

1 Brazil

2 France

3 China

EXTENDED

AttractionId + AttractionName +
CountryName + AttractionPhoto

Attraction
table

CountryCity
table

Country
table

Base Transaction, Base Table and Extended Table of the For each command

Base Table

EXTENDED TABLE

Here we have a diagram with the relations between the tables in our
knowledge base.
Inside the For each we have the AttractionId, AttractionName,
AttractionPhoto and CountryName attributes. The first three belong to
the base table of the For each, while the last one belongs to one of the
tables of the extended table.

Rule

F5

Navegation report

We will run it to see the result.

First, we need to set some necessary properties to print the list in PDF
format. We open the report's properties and set the to
True.
Next, in the property we select .

Lastly, we have to insert the OutputFile rule in the rules section
because as we can see, an object of this type also allows defining some
rules even if fewer than in a transaction , so we select Insert/Rule
And we complete it by entering the filename of the

. list followed by the format that will be used: .

We save... and now we can run it.

The list is created! ...With the format selected... all the tourist attractions
that we had entered are included in the list, each one with the name of
the country they belong to and a photo.

In addition, a window Navigation is opened in GeneXus with a
report

Navigation Report

Base Table1

2

3

4

The physical table that will be navigated by the For Each command, as well as
other decisions made by GeneXus, are displayed in the procedure's navigation
list.

This list is automatically created when the procedure to be run is generated. In
this case, it was after pressing F5.

In it, GeneXus shows how it accesses the information in the database.

1. We can see that next to it also says Attraction, Podemos ver que
al lado de donde dice For Each to indicate that it is the For Each command
base table.

Remember that the For Each command runs through a physical table;
that's why the Attraction name displayed in the navigation list is that of the
ATTRACTION physical table, not the name of the base transaction that
we've written in the procedure. GeneXus infers this table because it is
associated with the base transaction we've indicated.

2. It also indicates that to order the list of attractions the AttractionId attribute
was used (it is the primary key of the Attraction table).

3. It also indicates that it has run through all the records in the table: because it
started by the first record and iterated until reaching the end of the table.
That is to say, all the attractions were displayed...

4. lastly.... it indicates that the table navigated was Attraction and it had to
access Country to retrieve information, because in our list we show the country
name.

Something we still had pending was that attraction should be listed in
alphabetical order, by name of the attraction.

We can do this by simply writing the clause AttractionName
next to each .

How to change the order of data

✓ The request was:

to list, on a PDF file all the tourist

attractions of the travel agency, in

alphabetical order.

it is possible to sort by any attribute of

the extended table of the table that

goes through the For each.

Navegation Report

For now, we don't pay attention to the warning displayed in the list.

But we should note how the navigation listing informs us why the
attribute will be ordered at the Output.

Just as we have added the optional clause to the For each, the
syntax of the For each also allows us to add several other optional
clauses and definitions, as we will see.

How to define filters

✓ The requirement is: a listing of all tourist
attractions in France.

Navegation report

For example, what would happen if the travel agency asked us to list
only the tourist attractions of France?

To the For Each command we would only add a clause called Where, to
have it filter and show only the data that meets the desired condition.

So, we click on the line after the For Each command and type
Where CountryId=2, because we know that France's ID is 2.

Instead of filtering by Country identifier, we could also have written
Where CountryName .

We see that the Attractions table is no longer run through entirely.
Since we're ordering by CountryName, to keep the countries called

it only has to run through part of the table, not all of it. It is
similar to when we look for the word 'France' in the dictionary. We don't
look in the entire dictionary. Instead, we go straight to letter .

How to define filters: navigation report

Snippets

Before reviewing everything we have seen, remember that the GeneXus
IDE is contextual, which means that the properties viewed from the
Toolbox depend on the object and the place where we are positioned.

If we select the source of a procedure, the Toolbox shows Snippets,
which are pieces of code that offer the general syntax of the different
clauses and structures that can be used in the source of a procedure.

Among them there are commands to control the PDF file design, such
as the Header that allows you to define a header that will be repeated
on each new page of the list, unlike the title we have added that is only
shown on the first page.
We recommend exploring all the options for designing a list in the
GeneXus wiki.

26

The For Each command is used to run through every record of a table
and perform an action with its related data.
To this end, we indicate the name of the transaction, or, more precisely,
the name of the transaction level whose associated table we want to
run through.

This level indication is called base transaction of the For Each
command.

From that level, GeneXus will infer the table to run through, which is
called base table of the For Each command.

Conceptualizing

✓ The For Each command is used to run through every record of a
table and perform an action with its related data.

For each TransactionName.LevelName

endfor

Base Transaction

Base Table

Conceptualizing

For each TransactionName.LevelName

…

endfor

Extended

Attributes present here must belong to the
extended table of the base table to run
through

Base Table

The set of attributes between For each and Endfor must belong to the
extended table of the base table to run through.

Conceptualizing

✓ Base Transaction:

• 1st trn Level = TransactionName

For each Flight

Where FlightDepartureAirportId = 1

…

Endfor

For each Flight.Seat

Where FlightId = 15

…

Endfor

• Nested trn Level = TransactionName.LevelName

In the first example we want to navigate the table of the flights
departing from airport 1. For the first level, the transaction name
matches the level name.

In the second example we want to navigate the seats on flight 15.

For each syntax

For each

endfor

where condition1

MainCode

BaseTransaction

where condition2

order att1, att2 attn

where conditionn

Here is a summary of what we've seen so far about the For Each
command. We will expand this syntax as we talk about more topics.

With the Order clause we can indicate the criterion used to order the
information returned by the For Each command. The order can depend
on the attributes in the base table of the For Each command or its
extended table.

As we can see, we can order by a single attribute or by several
attributes.

For each

endfor

where condition1

MainCode

BaseTransaction

where condition2

order att1, att2 attn

where conditionn

For each syntax: order

Example: COMPOSITE ORDER

Base Table

Extended

Example composite order

For example, if the tourist attraction category was also shown in the list,
and we wanted to order it by country name, and within the attractions
of the same country, by category name... we would type both attributes
in this order: first CountryName and then CategoryName

Here, CountryName and CategoryName are not included in the base
table, Attraction; instead, they are included in tables of the extended
table.

For each syntax: where

For each

endfor

where condition1

MainCode

BaseTransaction

order att1, att2, … , attn

conditiona and conditionb
conditiona or conditionb

Base Table

Extended

To filter the information returned by the For Each command, the Where
clause is used. In it, we indicate the condition that the records must
meet in order to be selected.

The condition can be complex and include several conditions joined by
AND or OR; that is to say, for example:
• Conditiona AND Conditionb: it means that both conditions must be
met at the same time.
• Conditiona OR Conditionb: it means that if one of them is met, it is
enough for the record being evaluated to pass the filter.

For each syntax: where

For each

endfor

where condition1

MainCode

BaseTransaction

order att1, att2, … , attn

where condition2

where conditionn

…

and

and

and

Base Table

Extended

We can also add several Where clauses, which is the same as writing
only one, with its conditions joined by AND.

Base Table

Extended

For each syntax: Main Code

For each

endfor

where condition1

MainCode

BaseTransaction

order att1, att2, … , attn

where condition2

where conditionn

…

Example

Within the For Each command, in its main code, we type the commands
that we want to run in sequence to perform, step by step, what we need
in the record of the base table in which it is positioned in each
moment... and those associated by extended table.

For example, print a printblock.

For each syntax: Main Code

For each syntax

For each

endfor

where condition1

MainCode

BaseTransaction

order att1, att2 attn

where condition2

where conditionn

Base Table

Extended

Therefore, this is how the For Each command structure looks so far.

The command accepts more clauses and options. Some of them will be
explained in other classes, and others will be addressed in other
courses

Automatic Tests

When developing a new functionality in our application, we need to test

whether what we have developed works as expected. It is also important

to test the entire application again after that change, to make sure that

what was already working is still behaving correctly.

As the application grows, this kind of tasks can become more tedious as

more and more things need to be tested, and also more costly as they

become more and more time consuming.

Automatic Tests

GeneXus helps us by providing functionalities to create and run automated

tests, in order to reduce some of the manual verification work.

Unit tests allow us to test one part of the application at a time. In GeneXus,

unit tests without an interface are applied to tests on procedures, Data

Providers, and Business Components. In short, those components where the

business logic of our application should reside, and that's why the Unit Test

object exists.

The Interface test allows us to create tests simulating a actions on the

browser, in order to test entire application flows. For this purpose, there are

UITest objects for mobile interfaces, and Web UITest objects for web

interfaces.

Unit Tests

We will focus on unit tests without an interface using the Unit Test object.

It is a new type of Object in our KB that is a special GeneXus Procedure.

This means that GeneXus code can be written inside it to test objects with

different data and validations.

Let's go to GeneXus to see it.

Unit Tests

We will create the corresponding test that allows us to test the

procedure we have just developed.

The simplest way to create it is to select the AttractionsList procedure,

right-click, and choose Create Unit Test.

GeneXus automatically creates the necessary objects to implement the

automated test. In this case, we want to test a procedure that does not

receive, process, and return any data, but only accesses the database

to display the registered attractions.

Note that in the KBExplorer window, a new Tests node is created, and

below it, the created tests associated with the corresponding objects.

To run it, we right-click and select Run Test.

As a result, GeneXus will show the result of its execution, elapsed time,

results obtained in different tests, etc.

Although we have just seen a very small and basic example, we can

test all kinds of procedures, Data Providers, and Business Components

in this way. We will study these objects later on.

At the end of the course and once we have studied all the necessary

concepts, we will see a more complete example and we will analyze

the behavior of the corresponding unit test.

training.genexus.com
wiki.genexus.com

