Procedures and listings

Command to access the database

GeneXus

Procedure object

It allows defining processes to access and navigate tables
in the database with various objectives...

We will see several possible objectives.

Procedure object

v~ We may need to navigate the records of a certain table that comply with certain conditions,
and for these records update a certain attribute with a given value.

A

Attractionid AttractionName

1 Louvre Museum 8245 +——

Attraction table
The Great Wall 10122

1 3 Eiffel Tower 11734 «—

Procedure object

v~ Navigate certain table and print all its data in a PDF list,
ordered by some criterion.

Attractionld AttractionName Countryld —
1 2

Louvre Museum
2 The Great Wall 3
3 Eiffel Tower 2

Attraction table
Attractions List

Louvre Museum France

2 The Great Wall China % %
- h

3 Eiffel Tower France E

Procedure object

Define specific processes that contain searches, calculations and database updates,

We solve all this by creating
(GeneXus Procedure object).

and print that information.
’ 5 | | |
e— + =72
P c
_:: - :__% Attractions List
S] Id Name Country Photo
1 Louvre Museum France
2 The Great Wall China
3 Eiffel Tower France
Procedures in our knowledge base

Procedure object

New Object
Select a Category: Select a Type:
.tAPI Transaction
User Interface {#53Data Provider
BPM ‘EData Selector
Chatbots ©3Data Vi
Resources §=Data View
Documentation Domain
E; ibili rocedure
Deploy tyh Structured Data Type
Reporting £ Subtype Group
Test
ALL

Describes an object or actor of reality, defining the structure of the database, business rules, and the Ul
for data manipulation.

Name: [T 1
Description: ‘ Transactionl
Module/Folder: 7IRoot Module X+

o

Example: list data in PDF format

If you wish: list in a PDF file all the tourist attractions of the travel agency, in alphabetical order.

e 0 o0nonenne ”*, Attractions List
oo (5]
Fixed content id__ Name Country Photo
(titles)
3 Eiffel Tower France
—
1 Louvre Museum France
2 The Great Wall China

Let’s start by defining a procedure to list all the tourist attractions that
the travel agency has to offer, in alphabetical order.

Procedure: Source y Layout

Source: for the instructions to be executed

StartPage X .= Atractionslist® X

@Layoutl Rules ‘ Conditions | Variables

o

I

| —

StartPage X .= AfractionsList™ X -

Sourcall:lllu\as | Conditions | Variables

I R R T
1

[Z] = printBlock1 ‘

< |||]

Zoom Factor: 100 |

Once the object has been created, we see that GeneXus takes us to a
section called Source. Here is where we'll type commands and orders
that enable the procedure to meet its objective, which in this case is to
print a list of tourist attractions.

Now let's look at this other section called Layout. The layout is the place

where the output is designed; that is to say, where we set how we want
to view our data.

Layout

It is made up of printblocks

BRI > s . T
Source [Layout | Rules | Conditions | Varisbles = Controls

bl Attribute/Variable
[ea] Image

= Line
[7] Rectangle
A Text Block

o |

Zoom Factor: 100

One already appears by default. It is called printBlockl.

It is made up of printblocks and inside the printblocks we will include
what we want to show.

We may want to show titles, lines, rectangles, images, as well as
attribute or variable values. To do so, we will drag them to the
printblock from the toolbar.

Note that a printblock is automatically included in the layout.

With this printblock we can display a title or today's date, or we can add
more printblocks in this section, as we will see.

Layout

Printblocks for our listing:

Title Xl Attractions List
Column
Titles 'd__ Name Country Photo

3 Eiffel Tower France
Attractions
\» 1 Louvre Museum France
2 The Great Wall China

We may define three printblocks:

+ one with the list title and its image, which could be named Title

» another one to show the column titles with the line below them, that
could be named ColumnTitles

+ and a third printblock where we will display the tourist attraction
details, which will be named Attractions.

So, let's start to define this.

Layout

1. PrintBlock:

T 7
= Controls

Aftribute/\Variable
@ Image

=l Line

|:| Rectangle

A Text Block

7 X
El4] F |Filter
Title|
Height 99

We can use the printblock that was created when we created the
procedure object for the title and image.

Let's start by the title. To do so, from the Toolbox we drag the Text
Block control... edit its properties... in the Text property we type
“AtractionsList”. We also change its color, MidnightBlue and font... Size
14, Bold=True, and select its position in relation to the margins.

We will give this printblock a clear name that represents what is being
displayed. To do so, we select the printblock properties and edit its
Name property by assigning it the name “Title”.

Now, let's insert the image with the plane on the left by dragging the
Image control from the Toolbox and dropping it where we want it to be
placed. Doing this...

Images in the Knowledge Base

Select Image Import Image From File X
Fiter || | Name |Dlane
oney]I} x
ActionCancel File |C\hm‘ﬂmW| |
ActionDelste
ActionDisplay [image has transiatable text
Actioninsert
ActionUpdate Cancel
AudioDowrload
Back
calendar
ComboAmow Select mage v
GenericFiler
MuttimediaClear Fiter |siane
Multimedia Edit i E -
PageFirst N (O e g
Pagelast 3
PageMext v Go—— [5i9]
|
Import from file | | New Exdemal Image
limport from fla New External Image
Carcel

...a window is opened for us to select one of the images existing in the
knowledge base, or add a new one, for example, by importing it from a
file.

The “Import from file” button allows us to explore our file system and
select the image, which will be created as a GeneXus object of Image
type with the image filename as default name. From then on we will be
able to freely use the image in our KB.

Images in the Knowledge Base

OES FX ol S = B [ial ImagesToolvfindow X -
Open Fitter |- i NewImage | Advanced v |
Category A - Ties -
Country Name Desciiption Last Update >
Customer ActionCancel Action Cancel 05/07/2016 1254pm _—
&0 ActionDelete Action Delete 05/07/2016 1254 pm e
agram) ActionDisplay Action Display 05/07/2016 1254 pm.
&5 Disgra Actionlnsert Action Insett 05/07/2016 1254 pm planepng
4 Dicgrafh3 Actionlpdate Action Update 05/07/2016 1254 p.m.
% Disary Back Back 05/07/2016 1254 p.m.
Flig calendar calendar 05/07/2016 1254pm
A ComboAmow Combo Arow 05/07/2016 1254 pm
ik Genenciter Genenc Fiter 05/07/2016 1254pm
4 i Pagefirst Page Fist 05/07/2016 1254 pm
3 axpo PageLast Page Last 050772016 1254p.m y
& Gxffosr Pagehext Page Next 05/07/2016 1254 p.m.
5 afoio o o Ao
& afpozo
- Bener ¥ 5 s S 20T 1252 pm
o
= selectRow select Row 05/07/2016 1254 pm
5 cfposo
B cfoost
[clooso
& cjooro
[cjoozo
5 cjoos
pplier
off) Referfinces
Y Custfmizstion
T Ufeslization
B Tpemes Output 2 X
2] images Show: General = [X | Find: + Autoscroll
ms
Generators
Documentation v

© Properties EIY
| 7 | Filter
Image: plane
MName plane
Description plane

Qualified Name | plane

©| Properties T Toolbox | [5 Form Preview

Note that from KB Explorer/Customization/Images we can access all the

images in the KB, among which is the image of the plane.

Layout

2. PrintBlock:

Start Page X :' AftractionsList™ X

Source I:I Rules| Cenditions | Variables

Now we will create another printblock to include the column titles, with
a line below them. If we right-click on a certain printblock and select the
“Insert Printblock” option a new printblock will be inserted below it.

The way in which printblocks are ordered in the Layout is not important
because it doesn't mean that they must be printed in that order. We
determine when to print each printblock in the code that we type in the
procedure Source. We will see it soon.

Now we will give the name “ColumnTitles” to this new printblock.
And in this new printblock we will insert a TextBlock for every text that
we want to show as column title.

So, from the Toolbox we drag the textblock, and in its Text property we
type “Id”. We add another Textblock, and in its Text property we enter
the text “Name”. And create another Textblock to show the text
“Country”. Lastly, we create a Textblock for the title “Photo”.

We place the controls in the positions we want... They can be aligned by
selecting them all at once and then: Menu/Layout/Align/Bottom.

Lastly, we will insert a line below these column titles. So, we return to
the Toolbox and drag a “Line” control.
We drag it from here... and give it the length we want...

Layout

3. PrintBlock:

EI = :E' Attractions

We still have to add the third Printblock that we had mentioned, to show

the tourist attraction details. So, we insert a new Printblock and call it:
Attractions.

Since the data is stored in attributes, we return to the Toolbox, select a
control of “Attribute/Variable” type and drag it below the “Id” title.

In the window that is opened we choose a variable or attribute to show

in the control. We see that in addition to &today, a procedure has these
other system variables.

We can also insert attributes in a printblock from the Insert / Attribute
option.

-

Source

Commands:

to print a printblock, and

to go over a table and its extended table to do something with each data record.

StartPage X .4 Attractionslist® X
I:I Layout ™ | Rules | Conditions | Variables . .
Attraction i

| <] —
print Title —
print ColumnTitles (- -

For each Attraction
print Attractions

Attractionld + AttractionName +
endForI ¥

CountryName + AttractionPhoto

[y T PV S

The design of how the data will be displayed in the list is ready.

Now we have to type the necessary code to obtain the right information from
the database and have printblocks printed in the order we want.
Let's go to the Source option...

The first thing we want to print is the report title, so we type “print Title”. Since
the instructions we type in the Source will be executed downwards, this
instruction will be the first one to be executed. With it, we're sending the
contents of the printblock called Title -the list's title- to print. The Print
command must always be followed by the name of a printblock defined in the
Layout.

Next, we want to print the column titles, so we have to give the order to print
the “ColumnTitles” printblock...

With these two instructions we have given the order to print the fixed part of
the report; that is to say, the part that will not change with the data: the part
containing the report title and the plane image, and the part containing the
column titles.

Now we have to print the attractions' data that is stored in the database. To do
s0, we must access the physical table that has this information stored; that is to
say, the table associated with the Attraction transaction.

The command that allows us to access a physical table is the “For Each”
command. The physical table that is accessed is called base table of the For
Each command.

So we type the For Each command... Next to it: Attraction. Why do we type Attraction
next to the For Each command?

Because it is the name of the attraction whose associated physical table we want to
navigate...

. and now... since we want to print, for every tourist attraction, the content of the
attributes Attractionld, AttractionName, CountryName, and AttractionPhoto we type the
order to print the “Attractions” printblock that contains them. We type Print Attractions.

o =

For each command

For each

l

Attraction

Attractionld + AttractionName +
CountryName + AttractionPhoto

Attractionld AttractionName Countryld Cityld
1 Louvre Museum 2 1
2 The Great Wall 3 1
3 Eiffel Tower 2 \ 1
Attraction Countryld Cityld CityName
table
1 1 Rio de Janeiro
1 2 Sao Paulo
(2) 1 I"/ Paris
3 1 Beijing
CountryCity = 2 S
table 3 3 Hong Kong
Countryld CountryName
1 Brazil
Country 2 France I
table 3 China

In this way, we have told GeneXus to navigate the ATTRACTION
physical table, which corresponds to the Attraction transaction.

Since within the For Each command we have invoked a printblock
containing attributes of the ATTRACTION and COUNTRY tables,
applying the concept of extended table, for each navigated attraction,
the COUNTRYCITY table will be accessed, and from it the COUNTRY
table, to obtain the name of the country where this attraction is located.

-

Base Transaction Base Table
_—
X
Attractionld AttractionName Countryld Cityld
1 Louvre Museum 2 1
2 The Great Wall 3 1 \
3 Eiffel Tower 2 1 \
Attraction Attraction Countryld Cityld CityName
table
T 1 ® 1 Rio gé Janeiro
for each 1 2 Sao Paulo
print Attractions 2 ! Paris
endfor 3 1
‘:::Tj CountryCity EXTENDED
6"*—:‘] table
:;7_, Countryld CountryName
. . 1 Brazil
Attractionld + AttractlopName + Country ., France
CountryName + AttractionPhoto _
table 3 China

In this way, we have told GeneXus to navigate the ATTRACTION
physical table, which corresponds to the Attraction transaction.

Since within the For Each command we have invoked a printblock
containing attributes of the ATTRACTION and COUNTRY tables,
applying the concept of extended table, for each navigated attraction,
the COUNTRYCITY table will be accessed, and from it the COUNTRY
table, to obtain the name of the country where this attraction is located.

Base Transaction, Base Table and Extended Table of the For each command

&

“ SupplierAtiraction ¥ | [Supplier

—
-
Altrachan 2 Category
¥ Attracﬁonld Categoryld
AttractionName CategoryName " Customer =
Countryld =
Categoryld
AttractionPhoto
Cityld
[Couniry =
| ¢ Countryld | Fight ¥
CountryCily CountryName —w
Countryld - 7
Cityld e e
CityName b — ¥ Fighte 5

Here we have a diagram with the relations between the tables in our

knowledge base.
Inside the For each we have the Attractionld, AttractionName,

AttractionPhoto and CountryName attributes. The first three belong to
the base table of the For each, while the last one belongs to one of the

tables of the extended table.

Procedure object’s Properties

B=
=

€| Properties 2 X
21 % | Fitter pre
i [= £
W Aftractionslist™ X
Name AttractionslList
e : : Source ™ | Layout I:l Conditions | Variables
Description Attractions List
Module/Folder | Root Module El: Dutput_file(AttractionsList.pdf', 'pdf'};
i
Main program True
Call protocol HTTP
Execute in new L| False A Aractons List
Qualified Name | AttractionsList F5 o
Object Visibility = Public x
Application titl Navegation report...

Application ice

We will run it to see the result.

First, we need to set some necessary properties to print the list in PDF
format. We open the report's properties and set the “Main program” to
True.

Next, in the “Call protocol” property we select “HTTP”.

Lastly, we have to insert the OutputFile rule in the rules section...
because as we can see, an object of this type also allows defining some
rules —even if fewer than in a transaction-, so we select Insert/Rule...
And we complete it by entering the filename of the
“AttractionsList.PDF” list followed by the format that will be used: “PDF”.

We save... and now we can run it.
The list is created! ...With the format selected... all the tourist attractions
that we had entered are included in the list, each one with the name of

the country they belong to and a photo.

In addition, a window “Navigation View” is opened in GeneXus with a
report...

Navigation Report

Start Page X :' AttractionsList X Navigation View X

Pattermn: l:l Procedure AttractionsList Navigation Report =]
; Co . ’
— e | Name " AftractionsList Environment B Default (C#)
Q _,- Description Attractions List) oL P
. . Spec. Version é{ 15_0_0-104342
Output Devices File B
Main Yes Form Class Grapth }
Program Name AttractionsList
Call Protocol HTTP
Parameters
Levels =]
For EachIAttraction tLine: 10) =]
Order: Attractionld
Index: IATTRACTION
I'-_Ja'-;igaticn Start from: FirstRecord
filters: Loop while: MotEndOfTable
Join lecation: Server
Ed=Attraction (Attractionld)
=Country (" Countryid)

|@ 0 Errors | 0'Warnings |Q 1 Success |

The physical table that will be navigated by the For Each command, as well as
other decisions made by GeneXus, are displayed in the procedure's navigation
list.

This list is automatically created when the procedure to be run is generated. In
this case, it was after pressing F5.

In it, GeneXus shows how it accesses the information in the database.

1. We can see that next to “For Each”, it also says Attraction, Podemos ver que
al lado de donde dice “For Each”, to indicate that it is the For Each command
base table.

Remember that the For Each command runs through a physical table;
that's why the Attraction name displayed in the navigation list is that of the
ATTRACTION physical table, not the name of the base transaction that
we've written in the procedure. GeneXus infers this table because it is
associated with the base transaction we've indicated.

2. It also indicates that to order the list of attractions the Attractionld attribute
was used (it is the primary key of the Attraction table).

3. It also indicates that it has run through all the records in the table: because it
started by the first record and iterated until reaching the end of the table.
That is to say, all the attractions were displayed...

4. lastly.... it indicates that the table navigated was Attraction and it had to
access Country to retrieve information, because in our list we show the country
name.

o e

How to change the order of data

Layout | Rules | Conditions | Variables

The request was: |:| ! | |

| |

print Title

print ColumnTitles

For each Attraction order AttractionNamﬁ

print Attractions
endfor

to list, on a PDF file all the tourist

[

attractions of the travel agency, in
alphabetical order.

1 Mmoo L B

For each Attraction order CountryNamg]
print Attractions

...it is possible to sort by any attribute of endfor

the extended table of the table that
goes through the For each.

Something we still had pending was that attraction should be listed in
alphabetical order, by name of the attraction.

We can do this by simply writing the clause “order AttractionName”
next to “For each Attraction”.

Navegation Report

StartPage X 4* Aftractionslist X [T Navigation View X

Pattam: ‘ Procedure AttractionsList Navigation Report o
8
—————— | Name " AttractionsList Environment ¥ Default (C#)
e .,' Description Attractions List ~ & 15 0 0-104342
Output Devices File SRt Hlgtoos
Main Yes Graphic
Program Name AttractionsList
Call Protocol HTTP
Parameters
Warnings o

spc0038 There is no index for order AttractionName; poor performance may be noticed in group
starting at line 3.

Levels =]
For Each Attraction (Line: 10) =
Order: AttractionName
No index
Navigation Start from: FirstRecord
filters: Loop while: NotEndOfTable
Join location: Server

Ed=Attraction (Attractionld) INTO Countryld AttractionPhoto.Uri
AttractionPhoto Attractionl ttractionName
=Country (Countryid) INTO CountryName

[0 0 Errors] 0 Warnings [0 1 Success ‘

For now, we don't pay attention to the warning displayed in the list.

But we should note how the navigation listing informs us why the
attribute will be ordered at the Output.

Just as we have added the “order” optional clause to the For each, the
syntax of the For each also allows us to add several other optional

clauses and definitions, as we will see.

How to define filters

The requirement is: a listing of all tourist Altractions List

attractions in France.

Id_ Name Country Photo

Y
2 The Great Wall China %‘
.

StartPage X 4® Aftractionslist™ X E

I:l La}fu::-ut| Rules | Conditions | Variables -
1 Louvre Museum France -

| > |

print Title

print cnl”m”ntl?s where CountryName = "France’
For each Attraction order CountryName

where CounthId = 2
print Attractions

endfor

S I VR ¥ Y S U %

For example, what would happen if the travel agency asked us to list
only the tourist attractions of France?

To the For Each command we would only add a clause called Where, to
have it filter and show only the data that meets the desired condition.

So, we click on the line after the For Each command and type
Where...Countryld=2, because we know that France's ID is 2.

Instead of filtering by Country identifier, we could also have written
Where CountryName="France”.

How to define filters: navigation report

StartPage X 4= jonsList X Navigation View X
Pattem: I:l Procedure AttractionsList Navigation Report
——— | Name :' AttractionsList Enviranment
_:- Description Attractions List = e
Spec. Version
Qutput Devices File : Clase
Main Yes orm Class

Program Name

Call Protocol

Parameters
Warnings

=l
E Default (C#£)
& 15_0_0-104342
Graphic
AttractionsList
HTTP

=]

starting at line 3.

spc0038 There is no index for order CountryName; poor performance may be noticed in group

Join location: Server
El=Attraction (Att
=Country

‘@ 0 Errors | 1 Warnings Io 0 Success

Levels =]
For Each Attraction (Line: 10) =]}
Order: CountryName
g inde
I‘_la\‘igat\cn Start from: CountryName = 'France’ ‘
filters: Loop while: CountryMName = 'France’

We see that the Attractions table is no longer run through entirely.
Since we're ordering by CountryName, to keep the countries called
‘France’ it only has to run through part of the table, not all of it. It is
similar to when we look for the word 'France' in the dictionary. We don't
look in the entire dictionary. Instead, we go straight to letter “F”.

Snippets
StartPage X .* Procedure2® X v T Toolbox
Source * = Snippets
“ S F) DoCase
[F) Dowhile
1-Header EI & romer
2 / *Header Code*/| = &) covenchiising
3 End| (Z) For each using When none
(Z) Foreach When none
) Forin
) Forto
F) FortoStep
(Z] Header

Output

F) irEise
F) New

Z subroutine

Before reviewing everything we have seen, remember that the GeneXus
IDE is contextual, which means that the properties viewed from the
Toolbox depend on the object and the place where we are positioned.

If we select the source of a procedure, the Toolbox shows Snippets,
which are pieces of code that offer the general syntax of the different
clauses and structures that can be used in the source of a procedure.

Among them there are commands to control the PDF file design, such
as the Header that allows you to define a header that will be repeated
on each new page of the list, unlike the title we have added that is only
shown on the first page.

We recommend exploring all the options for designing a list in the
GeneXus wiki.

26

Conceptualizing

The For Each command is used to run through every record of a
table and perform an action with its related data. _

. Base Table
For each TransactionName.LevelName

<«

endfor

The For Each command is used to run through every record of a table
and perform an action with its related data.

To this end, we indicate the name of the transaction, or, more precisely,
the name of the transaction level whose associated table we want to
run through.

This level indication is called base transaction of the For Each
command.

From that level, GeneXus will infer the table to run through, which is
called base table of the For Each command.

Conceptualizing

For each TransactionName.LevelName Base Table

Attributes present’here must belong to the
extended table of the base table to run
through

endfor

| Extended

The set of attributes between For each and Endfor must belong to the

extended table of the base table to run through.

Conceptualizing

Base Transaction:

Ist trn Level = TransactionName
For each Flight
Where FlightDepartureAirportld = 1

Endfor

For each Flight.Seat
Where Flightld = 15

Endfor

Nested trn Level = TransactionName.LevelName

[Flight

- Flightld

S, FlightDepartureAirportld
-8, FlightDepartureirportiame
FlightDepartureCountryld
FlightDepartureCountryMame
FlightDepartureCityld
FlightDepartureCityName
FlightArrivalAirportld
FlightArrivalAirporthame
FlightArrivalCountryld
FlightArrivalCountryMName
FlightArrivalCityId
FlightArrivalCityMName

- » FlightPrice

w7 g 0 7 R g P

0

o

® FlightDiscountPercentage

2 Airlineld

¢ AirlineMame

- @ AirlineDiscountPercentage
n| FlightFinalPrice

- . FlightCapacdity

B Seat

i ¢ FlightSeatld

: ¥ FlightSeatChar

,J FlightSeatLocation

In the first example we want to navigate the table of the flights
departing from airport 1. For the first level, the transaction name

matches the level name.

In the second example we want to navigate the seats on flight 15.

For each syntax

For each BaseTransaction

order att,, att,, ..., att,
where condition,

where condition,

where condition,

MainCode

endfor

Here is a summary of what we've seen so far about the For Each
command. We will expand this syntax as we talk about more topics.

For each syntax: order

For each BaseTransaction N

order att, att,, ..., att, Base Table

where condition,

where condition,

| Extended

where condition,,

MainCode I

endfor —

Example: COMPOSITE ORDER

With the Order clause we can indicate the criterion used to order the
information returned by the For Each command. The order can depend
on the attributes in the base table of the For Each command or its
extended table.

As we can see, we can order by a single attribute or by several
attributes.

e

Example composite order

Flr‘il"lt Title /—H\ P e Y
print ColumnTitles & “— oty 2
For eafh Attr‘actl?n order CountryName, CategoryName 7 Aftractionld W
print Attractions Mttractioniame CategoryMame
endfor Countryld R E—
Attractions Categoryld
AttractionPhoto AttractionPhoto
... Cityld
T iMra T Bttractionbame CountryName : CategoryMame —t—
= -\«_ "'G " =
Attractions List
¢ Countryld ¢ Countryld
¢ Cityld CountryName
4 Name Country Photo Category CityMame ; g
o,)
2 TheGreat Wall china —%ﬂ
3 Eiffel Tower France E Mumenl
[il gic
1 Louvre Museum France v Museum

For example, if the tourist attraction category was also shown in the list,
and we wanted to order it by country name, and within the attractions
of the same country, by category name... we would type both attributes
in this order: first CountryName and then CategoryName...

Here, CountryName and CategoryName are not included in the base
table, Attraction; instead, they are included in tables of the extended
table.

For each syntax: where

For each BaseTransaction

order att,, att,, ..., att, Base Table

where condition,

condition, and condition, l
condition, or condition, . Extended

MainCode I

endfor

To filter the information returned by the For Each command, the Where
clause is used. In it, we indicate the condition that the records must
meet in order to be selected.

The condition can be complex and include several conditions joined by
AND or OR,; that is to say, for example:

+ Conditiona AND Conditionb: it means that both conditions must be
met at the same time.

+ Conditiona OR Conditionb: it means that if one of them is met, it is
enough for the record being evaluated to pass the filter.

For each syntax: where

—
For each BaseTransaction —
order att,, att,, ..., att,]
where condition;) and
where condition,) and
where condition,) and - Extended
I , |

MainCode

endfor —

We can also add several Where clauses, which is the same as writing
only one, with its conditions joined by AND.

For each syntax: Main Code

For each BaseTransaction —

order att,, att,, ..., att,, Base Table

where condition, !

where condition,

where condition, . Extended

MainCode I
endfor R

Example...

Within the For Each command, in its main code, we type the commands
that we want to run in sequence to perform, step by step, what we need
in the record of the base table in which it is positioned in each
moment... and those associated by extended table.

For each syntax: Main Code

print Title

print ColumnTitles

For each Attraction order CountryName, CategoryName
print Attractions e

endfor \» AttractionPhoto
i AttractionMame CountryName ; CategoryName

Attractions List

1d_ Name Country Photo Category

2 The GreatWall China

1 Louvre Museum France

3 Eiffel Tower France E Monument

For example, print a printblock.

For each syntax

For each BaseTransaction I

order att,, att,, ..., att, Base Table

where condition,

where condition,

where condition, - Extended

MainCode I

endfor I

Therefore, this is how the For Each command structure looks so far.

The command accepts more clauses and options. Some of them will be
explained in other classes, and others will be addressed in other
courses

Automatic Tests

When developing a new functionality in our application, we need to test
whether what we have developed works as expected. It is also important
to test the entire application again after that change, to make sure that
what was already working is still behaving correctly.

As the application grows, this kind of tasks can become more tedious as
more and more things need to be tested, and also more costly as they
become more and more time consuming.

Automatic Tests

GeneXus objects:
5 - Procedures
Unit Test - Data Providers
- Business Components

GeneXus objects:
> - Ul Test
Web Ul Test

User Interface Test

GeneXus helps us by providing functionalities to create and run automated
tests, in order to reduce some of the manual verification work.

Unit tests allow us to test one part of the application at a time. In GeneXus,
unit tests without an interface are applied to tests on procedures, Data
Providers, and Business Components. In short, those components where the
business logic of our application should reside, and that's why the Unit Test
object exists.

The Interface test allows us to create tests simulating a user’s actions on the
browser, in order to test entire application flows. For this purpose, there are
UlTest objects for mobile interfaces, and Web UlTest objects for web
interfaces.

Unit Tests

pen: |

'{: Travel Agency
P Root Module
Efﬂ General
D Tests
B AttractionListTests
4 AttractionListTest
g AttractionListTestData

(4 AttractionListTestSDT
[statPage X &% AttractionListTest X
I!!I!I La u‘:‘"‘r”“L‘L tions les | He “,;,u n'v‘u-‘
1:‘/* Autogenerated unit test code for Procedure 'Attractionlist’ */
2
3= For &TestCaseData in AttractionListTestData()
4
S=] PR BEE i
6 &TestCaseData.Quantity = AttractionList()
7
8z /* Assert... b
9 AssertNumericEquals(&TestCaseData.ExpectedQuantity, &TestCaseData.Quantity, format(!'%1.ExpectedQuantity: %2', &TestCaseData.TestCaseld, &TestCaseData.MsgQuant
10: “endfor
11

We will focus on unit tests without an interface using the Unit Test object.

It is a new type of Object in our KB that is a special GeneXus Procedure.
This means that GeneXus code can be written inside it to test objects with
different data and validations.

Let's go to GeneXus to see it.

Unit Tests

2 [stotPage X % AttroctionListTest X
Open: |AttractionListTest ‘Source
"5 TravellAgency
if‘ Root Module 1= /* The selected procedure has no parameters. */

) General = i X

e 3. AttractionList()

&7 Tests n

f:* AttractionListTests
-.' AttractionListTest

i= Tests Results r X

Start: 2022-10-10 15:57:05 End: 15:57:05 Elapsed: 299 ms

Tests ran: 1

A

Execution results

A\ Tests AttractionListTest (204 ms)

We will create the corresponding test that allows us to test the
procedure we have just developed.

The simplest way to create it is to select the AttractionsList procedure,
right-click, and choose Create Unit Test.

GeneXus automatically creates the necessary objects to implement the
automated test. In this case, we want to test a procedure that does not
receive, process, and return any data, but only accesses the database
to display the registered attractions.

Note that in the KBExplorer window, a new Tests node is created, and
below it, the created tests associated with the corresponding objects.

To run it, we right-click and select Run Test.

As a result, GeneXus will show the result of its execution, elapsed time,
results obtained in different tests, etc.

Although we have just seen a very small and basic example, we can
test all kinds of procedures, Data Providers, and Business Components
in this way. We will study these objects later on.

At the end of the course and once we have studied all the necessary
concepts, we will see a more complete example and we will analyze
the behavior of the corresponding unit test.

GeneXus’

training.genexus.com
wiki.genexus.com

