
Invocations between objects

In previous situations we've had to call an object from another object.

For example, when we implemented the AttractionsList procedure object,

similarly, whose country identifier was 2 (which corresponded to

However, this implies that if we wanted to filter the attractions of a
country other than France, we would have to change the procedure code
every time!

Object B
(AttractionsList)

Object A

Value &parm

Ideally, we should be able to "receive" in this object the value that we want
to filter by. In other words, that another GeneXus object allows the user to

attractions listed according to the country received.

Next, we will use this example to see how to implement this
communication between GeneXus objects.

Establishing communication between objects.

2) We add a button to call the AttractionsList
procedure.

Button that has the ListAttractionsByCountry event associated with
it

Variable containing the country indicated in the web panel form

Variable with Dynamic Combo control type to show the
user the countries in the database.

1) We create a web panel that asks for the country to
be considered.

Event:

First, we need to create an object that provides a screen to prompt the
user for values and do something with those values. One of the objects
that enables this is the web panel, which will be studied in detail later. For
now, let's say it is a visual, flexible panel that can prompt the user for data,
as well as show information from the database or other sources, among
other things. For example, the attractions Work With element was
automatically implemented by GeneXus as a Web Panel.

So, we will create an object of this type, and call it EnterAttractionsFilter.
Note that a Web Form will be created to be the object screen. It contains a
single table

We add a CountryId variable... Since its name is the same as that of the
attribute, it is based on it and, therefore, takes its same data type. In this
way, if we change the attribute's data type, for example, from numeric (10)
to numeric (4), the variable will automatically take this new value.
Now we edit the variable properties and see that its Control Type property
takes the Edit value. This means that when the web panel is executed, this
field will expect the user to enter a numeric value, but it will not provide
any help to choose from the values existing in the database or indicate the
corresponding country. We will change the control type to Dynamic
Combo Box. In this way, the user will be offered a series of values

extracted from the database for him to choose one. What values?

Those of the CountryId attribute. That is to say, the Country table will be
run through and the existing CountryIds will be loaded in the combo box.
But, since identifiers don't usually provide any details, even though the
variable will store a country identifier, the user will be shown the content
of the attribute indicated in the Item Descriptions property of the
variable... We choose to show the country name. Note that the arrow that
indicates the combo is displayed. In sum, at runtime it will offer a combo
box with a list of the countries stored in the database to choose the one
we're interested in.

Also, we add a button. We're asked to enter the name of the event that will

We see that the button's text takes the same default name. If we click on
it, right-click, and select Go to Event... we see that an event with that
name has been created, and automatically changed from the Web Form
tab to the Events tab. Also, the cursor is waiting for us to enter the code
that will be run when this event is triggered. That is to say, when the user
presses the associated button.
What we need to do now is call the AttractionsList procedure object that
lists the attractions and send the country that we want to use to filter
them.

Note that when we press the button and run this code, the &CountryId
variable will contain the country identifier of the country selected by the
user in the combo box displayed on the screen. Previously, we saw that a
variable is a portion of memory that is given a name and used to
temporarily save a data item. Also, that each object has its variables
section. That is to say, variables defined in an object are only known in this
object.

So, if two objects have a CountryId variable, even if they have the same
name, they will be two different variables.

Establishing communication between objects.

Object BObject A

Parm

Call

So, how do we make an object A call another object B at a given moment,
sending it values? Also, this object B should be able to load in its internal
variables the values sent to it, in order to do something with that
information.

For an object to be able to receive values (which we call parameters), we
must open its Rules section and write a Parm rule. This Parm rule declares
the parameters that the object can receive and/or return to the caller.

Parm rule

For an object to be able to receive values (parameters), the Parm rule must be used.

It indicates that a value is received in
this variable.

Since in our example the values will be received by the AttractionsList
procedure object, we open the object

Note that the Toolbox shows all the rules that we could enter in an object
of this type. Among them is the Parm rule, and we could have dragged it
from there.

In addition, we are informed that we have to replace this with an attribute
or variable. Next, we will talk about attributes. For now, we will only look at
variables.

CountryId variable will be an input
parameter. This means that it will only be used to receive a value from the
caller. It will not return any values. We can skip this information and have
GeneXus infer it.

We have written the variable name, but we haven't entered it as a variable
in the object. To do so, we can click on the name, right-click, and select

If now we open the variables tab we can see that it has been defined. By
default, it is based on the CountryId attribute. This is because it has the
same name as an attribute.

In this object we have created the variable with the same name and data
type as the one we used in the web panel for the user to enter the country.

However, as we've said, they are two different variables. One is only valid
in the web panel and the other in the procedure. We could have used
different names in both objects, but for the communication and sharing of
data Video recorded with to be correct, the data type of the caller and
called objects must be compatible.

Now, our procedure object is ready to receive a country identifier, in this
case from the EnterAttractionsFilter web panel.

Parm rule

For an object to be able to receive values (parameters), the Parm rule must be used.

It indicates that a value is received in this
variable.

We change the Source:

We change it to

Now we only have to remove the fixed filter that we had (country value 2)
in the For each command and change it for the variable whose value is
received as a parameter.

Object B
(AttractionsList)

Object A

&CountryIdParm

Call

&CountryId

AttractionsList (CountryId)

AttractionsList (2)

Note that since the Parm rule has been stated in this way, from now on any
object that calls the procedure will be able to (and will have to) send the
country identifier value. It will no longer be possible to call this procedure
without sending it a value of this type. That's why the AttractionsList
procedure will no longer be displayed in the Developer Menu.

In the web panel case we had this value in a variable (that user entered in
screen). But if we had the data in an attribute, we would include the
corresponding attribute between the brackets.

We may also send a value.

Object BObject A

Call
AttractionsList (attribute1, 2, &variable1)

Parm
, ,

Or, if we had to send two or more values, we would send several
attributes, and/or explicit values, and/or variables separated by commas.

These parameters are also declared in the parm rule in an ordered
manner, separated by commas.

Obviously, an object that doesn't receive parameters must not declare the
Parm rule.

We try what we have done by pressing F5. We see that the AttractionsList
procedure is no longer displayed. Now we can only call it through the web
panel...

In the country combo, we choose France... and press the button.

By choosing the value France from the dynamic combo, the identifier
value of France was internally selected (in this case, value 2); that value is
sent to the AttractionslList procedure.

We see that the report is run, showing only the attractions of the country
France.

List attractions in a specific name range

Proc. AttractionsByName

Now, let's suppose that we want to list all the attractions whose names

To do so, to the web panel that we previously created we will add the
possibility for the user to enter a start name and an end name. In this way,
pressing a button will call a list to show all the tourist attractions whose
names are within that range.

We open the EnterAttractionsFilter web panel and add a table with two
variables:

&AttractionNameFrom, is based on the AttractionName attribute, and
&AttractionNameTo, which is also based on the definition of
AttractionName.
As we've said before, this means that the variable definition is linked to the
attribute definition, and if we change the attribute data type, the variable
will be automatically changed accordingly.

on the button we've just added, right-click and select Go to event. From
here we need to call the procedure that will print the tourist attractions

within the selected range.

We click on the button we've just added, right-click and select Go to
event. From here we need to call the procedure that will print the tourist
attractions within the selected range.

We already had the AttractionsList
the country identifier, not the name range. We will save it with another
name, AttractionsByName, and change its Parm rule, so that now it
receives two input parameters: The &NameFrom variable and &NameTo
variable.

We have to define them as variables and set their data types, so we right

When we edit its properties, we base it on the AttractionName attribute.

We do the same with &NameTo.
Now we will use these variables/parameters in the For Each command, to
keep the attractions that meet the condition that their AttractionName is
greater than or equal to the value of the &NameFrom variable, as well as
lower than or equal to the value of the &NameTo variable.

In this way, the procedure is ready and we only have to call it from the web
panel.
We open the web panel and add the invocation. We drag the
AttractionsByName report from this window to avoid having to type it;
between brackets we type the parameters separated by commas, which in
this case are the variables &AttractionNameFrom and &AttractionNameTo
that are offered to the user on the screen.

Note that the first parameter we wrote in the call will be loaded in the first
parameter defined in the Parm rule of the called object, and the second
parameter of the call will be loaded in the second parameter of the
invoked object.

We must pay attention to the order used in the invocation and definition of
the Parm rule. It's good practice to use related names as we've done here,
in order to better understand the code.

Note that the names we've chosen for the variables in the web panel and
in the procedure are different. As we've said before, what's most important
is that the data types sent and received must match.

Let's press F5 to run it.

We open the web panel, and first of all we want to see all the attractions

attractions are listed.

We see how the filter has worked.

List attractions with a single button and a single procedure

Web panel Proc. AttractionByNameAndCountry

We could also have implemented this with one procedure instead of two;
let's see how.

First of all, the following must be done: return to the EnterAttractionsFilter
web panel, configure the Empty Item of the CountryId variable to True,

this panel is accessed, there will not be a default country selected as

Now we create a procedure that will be a mix between AttractionsByName
and AttractionsList
AttractionsByName, and call it AttractionsByNameAndCountry.
In this new procedure, we must receive three parameters, which will
correspond to the three filters that we have created in the web panel. So,
in addition to those already entered, the CountryId variable is added, and
included in the list of variables of this procedure.

In the Source section, we add another Where clause, to see the filter by
country, where CountryId is equal to the CountryId variable.
Now we only have to create the new button in the web panel to execute
this procedure. We delete the two we had created, and generate one
named List Attractions.

We right-click on it and select Go To Event to program its behavior.

We comment the previous events since we are not going to use them, and
from the new event we invoke the new procedure object created,
AttractionsByNameAndCountry, passing by parameter the three variables
that we have created and that are offered to the user on screen,
CountryId, AttractionNameFrom and AttractionNameTo.
We save the changes and run the application to test the operation.

We choose for example the country France, to show only the attractions

We press the List Attractions button and see that the filter works correctly.
If we select the country France again without entering filters by name
because we are interested in all the attractions of this country, if we press
the button, we can see that no attraction appears in the list. The same is
true if we do not choose any country, and we want to filter the attractions
by name only, regardless of the country. Suppose we want to see the

see that the list is empty. Why?

This is because in the Where clauses of the procedure, we do not include
the possibility that any of the values of the variables could be empty; that
is to say, that the user does not enter any value in that filter.
To solve this, we use the When clauses.

By using the When clause following the definition of the Where clause, we
indicate that we want to apply a restriction to the latter. In future videos
we will see in more detail how it works.
For example, in the case of our first Where, we add at the end When not
&NameFrom. isEmpty(); that is, when the variable NameFrom
an empty value.
We do the same for the other two conditions.

What we are doing here, is indicating that we want the Where condition to
be applied only when the variable has some value assigned; that is, when
it is not empty. Otherwise, this clause will not be applied and the following
line will be taken.
Now we save and run again with F5.

We select the country France, and we will not apply filters by name. We
click on the button List Attractions.
The list of all the attractions in France appears as expected.

Now we will try leaving the country unselected. We want to list the

condition are listed, regardless of the country, which is exactly what we
were looking for.

As we have just seen, doing it this way, we can filter only by country, only
by name, or by country and name. In addition, it has only one procedure
and only one button in our web panel.

We send everything we have done to GeneXus Server.

Lastly, we send everything we have done to GeneXus Server.

In the next video we will see other ways to send and receive parameters,
including the effects of placing an attribute in the Parm rule instead of in a
variable.

training.genexus.com
wiki.genexus.com

