
Invocations between objects (Cont.)

Object BObject A

Call

AttractionsList(attribute1, 2,
&variable1)

&var1 &var2 &var3Parm

In the previous video we saw how to state parameters in an object to allow it to
receive data from another object and perform the corresponding actions
according to this data. To this end we used the Parm rules and variables. The
examples we saw involved input parameters; that is to say, parameters only
received by the object.

In this way, if object B has a Parm rule stated with three variables, to invoke object
B, any object will have to send it three values that, as we've seen, may be saved in
attributes, be an expression (as in the case of a fixed value), or be saved in
variables.

Now we'll see what happens when object B must return a value to the caller object,
when it ends running.

2

In the Flight transaction we had a formula that calculated the price of a flight
according to the discount percentage offered by the airline and the percentage
indicated for the flight itself. It selected the biggest discount and applied it.

3

Suppose we're creating a transaction to record the invoices issued to
customers when they purchase flight tickets.

Also, suppose that the discount is a more complex calculation that implies not
only the flight, but also some condition related to the customer who is
purchasing a flight ticket. For example, the number of tickets that he
has purchased in the past, if he is a recurring customer, and if a destination is
offered at a discount. The discount percentage is determined according to
these more complex conditions.

4

Object B
(GetDiscount)

Object A

&var1 &var2 &var3Parm

?

For cases such as this, we may need to implement a procedure that makes
these calculations and returns the resulting value to the caller.

For example, we could call this procedure GetDiscount.

The procedure will have to receive the customer and flight as input parameters.
It will return the resulting discount.
The first question is how this result is received by the object that needs the
procedure result. It has to be considered as a function that is called in order to
perform an action with the result returned.

5

&discount = GetDiscount (CustomerId, FlightId);

msg (“Free Flight”) if GetDiscount (CustomerId, FlightId) = 100;

If GetDiscount (CustomerId, FlightId) > 10
…..
…..

endif

One possibility is to assign the result to an attribute. For example, we could define the
InvoiceFlightDiscount attribute in the Invoice transaction structure as a formula that is
calculated by invoking GetDiscount.

In this way, the formula will be evaluated in every object where the
InvoiceFlightDiscount attribute is mentioned. The GetDiscount procedure will be
invoked and executed, and when it ends running, the returned
result will be shown as the formula attribute value.

If we don't want to set this attribute as a formula, but rather we want it to be an attribute
stored in the corresponding table, and have it stored with the procedure result only
when the transaction is executed, we
Type

In addition, the result of the procedure's execution could be assigned to a variable.
Also, it may not be assigned, but used in an expression instead. For example, to
condition the triggering of a Rule.
Or of instructions in a procedure or an event.

If GetDiscount(CustomerId, FlightId) > 10

Endif

We will not talk about how to implement the GetDiscount procedure, because it isn't
relevant for what studying now. However, we must see how the parm rule is stated
in the called object when the call syntax
assumes that the object returns a value, as in the examples that we've just mentioned.

6

Object B
(GetDiscount)

Object A

Custome
rId

FligthId

&var
1

&var
2

&var
3Parm

&discount = GetDiscount (CustomerId, FlightId)

1 2

1 2 3

3 &var3

Custome
rId

FligthId

&var
1

&var
2

&var
3Par

m

GetDiscount (CustomerId, FlightId, &discount)

1 2

1 2 3

3 &var3

3

In the rules section of the GetDiscount procedure we must state the Parm rule
with the number of parameters described in the call.
Plus one at the end that will have to be a variable whose value is loaded in the
object code (and in our case, in the procedure Source).
The value taken by the variable when the code ends running will be the value
returned to the object that called it.

7

Object B
(GetDiscount)

Object A

CustomerId FligthId

&var1 att &var2Parm

&discount = GetDiscount (CustomerId, FlightId)

1 2

1 2 3

Lastly, let's look at the case where a parameter of the Parm rule is an attribute
instead of a variable.

What's the difference between using a variable or an attribute in the Parm rule of
the invoked object?

8

Object B

&var1 &var2 &var3Parm

FilterBy

>

<

<=

Like

&var1

parm (inout: &var1, in: &var2, out: &var3);

If the value is received in a variable, it can be freely used in the programming: it
can be used as a filtering condition for filters such as equality, higher than, higher
than or equal to, and so on... also, it can be used for an
arithmetic operation, or for whatever is necessary. It's a space in memory with a
name that we use within the object through explicit instructions, to do what we
want.

9

Object A Object B

ObjectB(value) Parm(IN:value)

Object A Object B

ObjectB(value) Parm(OUT:value)

Object A Object B

ObjectB(value) Parm(INOUT:value)

For each parameter declared in the Parm rule, you can define whether the
parameter is used to receive a value, to return a value, or both. This is done by
means of in, out, and inout operators, respectively.

The IN operator indicates that the parameter is an input parameter; that is, the
parameter comes with a value and that value cannot be changed.

Parameters with OUT operator are output parameters. They bring any
values and after the called object is executed, the output parameter will
contain the resulting value that will be returned to the calling object.

Lastly, an operator called INOUT makes the parameter input and output at the
same time. With this operator, the parameter comes with a value and can be
changed during the execution of the object. When finished, the
parameter will contain the value that is returned to the object that called it.

If none of these operators is declared in the parm rule, GeneXus will assign
the INOUT operator to all parameters, even if this is not displayed.

10

att1 att2 &var1Parm

FilterBy =

If, on the other hand, the value is received in an attribute, this is fixed, determined,
and implicit. We receive values in an attribute when we access the database from
inside the object. In particular, a table in whose extended table this attribute is
stored. So, when a value is received in that attribute through a parameter, an
equality filter will be applied. Only the records that have that value for the attribute
will be considered. Let's see this with an example.

11

We make a copy of the AttractionsList procedure with the AttractionsReport
name.
Remember that the procedure on which it is based uses a variable as a parameter:
&CountryId.
It used it to filter the attractions in the Attraction table by country.

As we can see, it is implementing an equality filter: it will list only those attractions
whose CountryId matches the value of the &CountryId variable received in a
parameter.
We could have implemented exactly the same without explicitly indicating that
filter.

How? By receiving the value directly in the CountryId attribute.
When we receive the value in an attribute in the Parm rule, GeneXus uses an
equality filter; that is to say, only those records that have the same country
identifier are accessed.

If we look at this object's navigation list

12

we see that the filter is applied even if the Where clause is not written.

It's interesting to note that since the For Each command is being run through
ordered by CountryName, the entire table has to be run through to filter by the
CountryId values corresponding to the parameter.

13

On the other hand, if we order by the attribute used to filter.
We see in the navigation list that the entire table is no longer run through.
We run it... And upload everything to GeneXus Server.

If we received more than one value using attributes to receive them, only the
records that have the same value as each attribute received would be accessed.
Also, we can't change these attribute values.
If our objective is not to receive values to apply an equality filter, the solution
will be to receive values in variables instead of using attributes. In addition, they
can be freely used in the programming, for example, to
assign other values to them if necessary.

Communication between objects is essential for any GeneXus application,
because it enables an object to start running another object and send or receive
information to and from it.

There are other ways of communication between objects in which there is no
passing of data by parameters.
One example of this occurs when information persists in memory through
WebSession variables, or when global events are used. These cases will not be
seen in this video, but it is important to know that there are several and diverse
forms of communication between objects.

14

training.genexus.com
wiki.genexus.com

