Invocations between objects (Cont.)

GeneXus

Object A Object B

Parm

Call

AttractionsList(attributel, 2,)

In the previous video we saw how to state parameters in an object to allow
it to receive data from another object and perform the corresponding
actions according to this data. To this end we used the Parm rules and
variables. The examples we saw involved input parameters; that is to say,
parameters only received by the object.

In this way, if object B has a Parm rule stated with three variables, to invoke
object B, any object will have to send it three values that, as we've seen,
may be saved in attributes, be an expression (as in the case of a fixed
value), or be saved in variables.

Now we'll see what happens when object B must return a value to the
caller object, when it ends running.

Start Page X ;:' AftractionsList X E EnterAttractionsFilter X Flight X -
I:l Web Form | Rules | Events | Varisbles | Pattems
Name Type Description Formula Nullable
=] Flight Flight Fiight
- § Flightld Id Flight Id No
S FlightDepartureAirportld Id Flight Departure Airport Id No
S, FlightDepartureairpartiame Name Flight Departure Airport Name
S, FlightDepartureCountryld b Flight Departure Country Id
S, FlightDepartureCountryName Name Flight Departure Country Name
S, FlightDepartureCityld d Flight Departure City Id
-8, FlightDepartureCityMame Name Flight Departure City Name
..5?. FlightArrivalAirportid Id Flight Arrival Airport Id No
-8, FlightArrivalairporthiame Name Flight Arrival Airport Mame
-8, FlightArrivalCountryld d
-8, FlightArrivalCountryMame Name Formuls Editor
-8, FlightArrivalCityld d FlightPricg®(1-AirlineDiscountPercentage/10@) IF AirlineDiscountPercentage >= =
-8, FlightArrivalCityMame Nai FlightDiscountPercentage;
* FlightPrice FlightPrice*(1-FlightDiscountPercentage/180) OTHERWISE;
» FlightDiscountPercentage
2 Airlineld T
¥ AirineName
¢ AirlineDiscountPercentage Percentaje Airline Discount Percentage
2 FiightFinalPrice Price Flight Final Price FlightPrice*(1-AirlineDiscountPercentage /100) TF Airline. ..
-4, FlightCapacity Numeric(4,0) Flight Capacity count({ FlightSeatiocation)
=] seat Seat Seat
- ¢ FlightSeatld d Flight Seat Td Mo
- ¢ FlightSeatChar SeatChar Flight Seat Char Mo
- 4= FlightSeatiocation Location Flight Seat Location Mo

In the Flight transaction we had a formula that calculated the price of a
flight according to the discount percentage offered by the airline and the
percentage indicated for the flight itself. It selected the biggest discount
and applied it.

FlightFinalPrice Price Flight Final Price FlightPrice=(1-AirineDiscountPercentage,/10... ===
ik R, iefA O Clhinkd . - &f Click PR
Formula Editor
FlightPricg*(1-AirlineDiscountPercentage/18@) IF AirlineDiscountPercentage »>= =
FlightDiscountPercentage;
FlightPrice*(1-FlightDiscountPercentage/18@) OTHERWISE;
Cancel
Invoice X Flight X -
|:| Web Form | Rules | Events | Variables | Patterns |
Name Type Description Formula Nullable
F Invoiceld Id Invoice Id Mo
' InvoiceDate Date Invoice Date Mo
Customerld Mumeric(4.0) Customer Id Mo
¢ CustomerMame Character(20) Customer Name
¢ CustomerLastMame Character{20) Customer Last Name
i+ ® InvoiceTotalAmount Price Invoice Total Amount Mo
E{=] Fiight Flight Flight
- Flightld d Flight Id Mo
¢ FlightPrice Price Flight Price
-8, FlightArrivalCountryName Mame Flight Arrival Country Name
8, FlightArrivalCityName Name Flight Arrival City Name
; InvoiceFlightDiscount Percentaje Invoice Flight Discount Mo
[InvoiceFlightAmount Price Invoice Flight Amount No

Suppose we're creating a transaction to record the invoices issued to
customers when they purchase flight tickets.

Also, suppose that the discount is a more complex calculation that implies
not only the flight, but also some condition related to the customer who is
purchasing a flight ticket. For example, the number of tickets that he

has purchased in the past, if he is a recurring customer, and if a
destination is offered at a discount. The discount percentage is
determined according to these more complex conditions.

Object A Object B
(GetDiscount)

Parm

For cases such as this, we may need to implement a procedure that makes
these calculations and returns the resulting value to the caller.

For example, we could call this procedure GetDiscount.

The procedure will have to receive the customer and flight as input
parameters.

It will return the resulting discount.

The first question is how this result is received by the object that needs
the procedure result. It has to be considered as a function that is called in
order to perform an action with the result returned.

Imvoice ™ X Flight X 5* GelDiscount X =
l:l Web Form ‘ Rules | Events ‘ Variables | Patterns
Name Type Description Formula Mullable
[=HE| Invoice Invoice Invoice
- Tnvoiceld 1d Invoice Td No
i o InvoiceDate Date Invoice Date No
& Customerld Numeric(4.0) Customer Id No
@ CustomerName Character{20) Customer Name
i@ Customerlasthame Character(20) Customer Last Name
* InvoiceTotalAmount Price Invoice Total Amount No
=] Fiight Fiight Flight
- Flightld d Flight Id No
- ¢ FlightPrice Price Flight Price
B, FlightArrivalCountryName Name Flight Arrival Country Name
-8, FlightArrivalCityName Name Flight Arrival City Name
B ocrigsan e mocrgtsen EoETCEEETONE
* InvoiceFlightAmount Price Invoice Flight Amount No

Inwoice * X Flight X .* GetDiscount X -

Structure ™ | ¥ Web Form I:l Events | Variables | Patterns |

17 InvoiceFlightDiscount = GetDiscount(CustomerId, FlightId)j|
= GetDiscount (Customerld, Flightld); =]

msg (“Free Flight”) if GetDiscount (Customerld, Flightld) = 100;

If GetDiscount (Customerld, Flightld) > 10

One possibility is to assign the result to an attribute. For example, we
could define the InvoiceFlightDiscount attribute in the Invoice transaction
structure as a formula that is calculated by invoking GetDiscount.

In this way, the formula will be evaluated in every object where the
InvoiceFlightDiscount attribute is mentioned. The GetDiscount procedure
will be invoked and executed, and when it ends running, the returned
result will be shown as the formula attribute value.

If we don't want to set this attribute as a formula, but rather we want it to
be an attribute stored in the corresponding table, and have it stored with
the procedure result only when the transaction is executed, we

Type

In addition, the result of the procedure's execution could be assigned to a
variable.

Also, it may not be assigned, but used in an expression instead. For
example, to condition the triggering of a Rule.

Or of instructions in a procedure or an event.

If GetDiscount(Customerld, Flightld) > 10
Endif

We will not talk about how to implement the GetDiscount procedure,
because it isn't relevant for what we're studying now. However, we must

see how the parm rule is stated in the called object when the call syntax
assumes that the object returns a value, as in the examples that we've just mentioned.

Object A Object B
(GetDiscount)

" lele e
L] Customerld Fligthld @ _
= GetDiscount (Customerld, Flightld)
Parm @ @ @
L] Customerld Fligthld @ i
GetDiscount (Customerld, Flightld,) /
© @ @ «

In the rules section of the GetDiscount procedure we must state the Parm
rule with the number of parameters described in the call.

Plus one at the end that will have to be a variable whose value is loaded in
the object code (and in our case, in the procedure Source).

The value taken by the variable when the code ends running will be the
value returned to the object that called it.

Object A Object B
(GetDiscount)

Parm att

O @ ©

[) Customerld Fligthld

= GetDiscount (Customerld, Flightld)

© @

Lastly, let's look at the case where a parameter of the Parm rule is an
attribute instead of a variable.

What's the difference between using a variable or an attribute in the Parm
rule of the invoked object?

Object B
Parm
FilterBy
>
<
<=
Like
parm (inout: ,in: , out:);

If the value is received in a variable, it can be freely used in the
programming: it can be used as a filtering condition for filters such as
equality, higher than, higher than or equal to, and so on... also, it can be
used for an

arithmetic operation, or for whatever is necessary. It's a space in memory
with a name that we use within the object through explicit instructions, to
do what we want.

Object A Object B
ObjectB(value) —_— Parm(IN:value)
Object A Object B
ObjeCtB(Va[ue) — Parm(OUT:value)
Object A Object B
- 5
ObjectB(value) Parm(INOUT:value)
«-—

For each parameter declared in the Parm rule, you can define whether the
parameter is used to receive a value, to return a value, or both. This is done
by means of in, out, and inout operators, respectively.

The IN operator indicates that the parameter is an input parameter; that is,
the parameter comes with a value and that value cannot be changed.

Parameters with OUT operator are output parameters. They don't bring
any values and after the called object is executed, the output parameter
will contain the resulting value that will be returned to the calling object.

Lastly, an operator called INOUT makes the parameter input and output at
the same time. With this operator, the parameter comes with a value and
can be changed during the execution of the object. When finished, the
parameter will contain the value that is returned to the object that called it.

If none of these operators is declared in the parm rule, GeneXus will assign
the INOUT operator to all parameters, even if this is not displayed.

10

Parm attl att2
FilterBy =

If, on the other hand, the value is received in an attribute, this is fixed,
determined, and implicit. We receive values in an attribute when we
access the database from inside the object. In particular, a table in whose
extended table this attribute is stored. So, when a value is received in that
attribute through a parameter, an equality filter will be applied. Only the
records that have that value for the attribute will be considered. Let's see
this with an example.

11

oy . .)
" AMtractionsReport ™ X v :,' AftractionsReport* X -
Source | Layout I:I Conditions | Variables ‘ Source | Layout l:l Conditions | Variables
1 parm(in: &CountryId); parm(in: Countryld };
2i :
3 output_file('AttractionsList.pdf’, 'pdf'); ™ utput_file('Attractionsiist.pdf’, “pdf'); 0
4 v
LH v o
< > < >
Layout | Rules* | Conditions | Variables Layout | Rules * | Conditions | Variables
1l print Title = 1 print Title =
: B PP
2; print ColumnTitles é 2. print ColumnTitles
S For each Attraction order Countryld y 3i=] For each Attraction order CountryId =
4i where Countryld = RE:unt'ngJ 4}
5 print Attractions s print Attractions
6: - endfor v & L endfor -
§ - o

We make a copy of the AttractionsList procedure with the
AttractionsReport name.

Remember that the procedure on which it is based uses a variable as a
parameter: &Countryld.

It used it to filter the attractions in the Attraction table by country.

As we can seg, it is implementing an equality filter: it will list only those
attractions whose Countryld matches the value of the &Countryld variable
received in a parameter.

We could have implemented exactly the same without explicitly indicating
that filter.

How? By receiving the value directly in the Countryld attribute.

When we receive the value in an attribute in the Parm rule, GeneXus uses
an equality filter; that is to say, only those records that have the same
country identifier are accessed.

If we look at this object's navigation list

12

:' AftractionsList X :' AttractionsReport X MNavigation View X -
Pattem: l:l Procedure AttractionsReport Navigation Report = A
: B ;
= = Name «" AttractionsReport Environment E Default (CZ)
= AttractionsReport ipti A i is . ¥
u” P Description frraction List Spec. Version & 15_0_n-105189
Cutput Devices File -
Main Yas Form Class Graphl_c
Program Name AttractionsReport
Call Protocol HTTP
Parameters in: CountryId
Warnings =]

spc0038 There is no index for order CountryName; poor performance may be
noticed in group starting at line 3.

Levels =]
For Each Attraction (Line: 10) =]

Order: CountryName

Mo index
Mavigation Start FirstRecord
filters: from:
Loap MotEndOfTable

Constraints§ Countryvld = @CountryId

Join —

location:

E=Attraction (Attrs)

=Country { Countryid) v

|@ 0 Errors | 1 Warnings IQ 0 Success |

we see that the filter is applied even if the Where clause is not written.
It's interesting to note that since the For Each command is being run

through ordered by CountryName, the entire table has to be run through
to filter by the Countryld values corresponding to the parameter.

13

it List X g Afir Report® X [E] MNavigation View X
[source =] Layout | Rules | Conditions | Variables |

-

print Title
print ColumnTitles

For each Attractionforder CountryId

print Attractions
endfor

dm s W

w o

o List X g® Report X Navigation View X T
Pattem l:l Procedure AttractionsReport Navigation Report o)
o p——— | | 12TE o> AttractionsReport Environment B Default (C=)
[I8} ~itractionsReport Description Attraction List - . T -
Output Devices File Spec. Version & 15_0_0-105189
Main T e Form Class Graphic
- Program Name AttractionsReport
Cali Protocol HTTP
Parameters in: Countryld
Levels =]
For Each Attraction (Line: 10) =]

Order: Countryid

L g d AT TR AT TONT
Navigation Start Countryld = @Countryld
filters: from:
Loop Countryld = @Countryld
while:

location:
Ed=Attraction (At
=Country (

[0 Errors [4 0 Warnings [1 Success

On the other hand, if we order by the attribute used to filter.
We see in the navigation list that the entire table is no longer run through.
We run it... And upload everything to GeneXus Server.

If we received more than one value using attributes to receive them, only
the records that have the same value as each attribute received would be
accessed.

Also, we can't change these attribute values.

If our objective is not to receive values to apply an equality filter, the
solution will be to receive values in variables instead of using attributes. In
addition, they can be freely used in the programming, for example, to
assign other values to them if necessary.

Communication between objects is essential for any GeneXus application,
because it enables an object to start running another object and send or
receive information to and from it.

There are other ways of communication between objects in which there is
no passing of data by parameters.

One example of this occurs when information persists in memory through
WebSession variables, or when global events are used. These cases will
not be seen in this video, but it is important to know that there are

several and diverse forms of communication between objects.

14

GeneXus

15

