DevOps with GeneXus

Introduction

GeneXus

DevOps is methodology where the creation of an app is integrated with the
operations that follow the development, such as production cutover, maintenance
and software evolution, in an endless cycle. Let us now see how this applies to

GeneXus.

DevOps definition

Dev

DevOps comprises a group of agile practices that combines software
development “Dev” with information technology operations “Ops” in order
to shorten the life cycle of system development while offering software in
a continued manner.

The “Dev” (development) cycle includes the application’s design,
development, coding, building and testing; and the Ops (operation)
includes its release, production cutover, operation, and monitoring. This
monitoring will determine future changes required in the software, such
as maintenance due to flaws fixed, or the evolution implied in the addition
of new functionalities that enable a better use of the app or keep it fully
valid.

Integrating all tasks within a continuous cycle enables companies in the
field of system development to benefit from market opportunities faster
and also to reduce the time necessary to include customer answers, thus
enhancing their experience with the software they use.

Let’s now see the main problems that come up in an app’s life cycle.

Integrating changes

P D e—
Code ﬁ Code
Test 4 "ﬁ"\\ (/ i :i_. Test
*.‘ — | L /
\ I ~ { { \ - el !
N i

Save for exceptional cases, software development is always a team
activity; and one of the main problems to solve there is the integration of
the changes that each developer makes to the app.

Every developer works on developing a functionality, within a cycle where
encoding and testing is done until the objective sought is achieved.

But, what happens when we want to integrate the work of developers so
that the functionalities they worked on are included in the app’s following
release?

Each of them will try to upload their changes to GeneXus Server, but
probably many conflicts will occur, particularly if the developers worked
independently for a long period of time. They may have defined objects
with the same name but for different purposes; or maybe one of them
modified existing objects by removing functionalities on which other
developers are relying.

Continuous Integration

* Frequent integration of changes, at least once daily.

* Integration verified automatically.

Continuous
integration

Developer Source control Release

The idea about continuous integration implies the frequent integration of
work, more than once daily, if possible, so as to avoid conflicts, or to just

have small conflicts that are easy to fix.

After the integration is produced, the app must be set up and tested

automatically to detect integration errors as soon as possible. Automatic

testing is also useful to make sure that nothing already in function has
stopped functioning (known as regression testing).

Continuous integration tools

To this end, we will be using GeneXus Server along with Jenkins, a
continuous integration engine. This tool will implement the whole
process.

D —
1] s
i . ser
v Push object lists
R —
8
N p
s ®
— o 1.1 - Check for
W Updates .
. Using GXServer
Jenkins Plugin
lStart Job
1.2 — Update KB
2 —Build All

3 = Run Unit Tests

For each Commit by a developer, at least the following automatic process
will be carried out: Update of KB, Build All, and execute tests.

When everything goes well, the Build is successful and we may move on.
Otherwise, the process must be stopped to solve the conflict
encountered.

Stages in an app’s life cycle

Code Build Integrate Test Release Deploy

AGILE DEVELOPMENT

CONTINUOUS INTEGRATION

CONTINUOUS DELIVERY

CONTINUOUS DEPLOYMENT

These steps make up the life cycle in an application.

Our development method may be considered agile when our process is
capable of speeding up the development and building process.

When we add automated integration and validation to our process we
have achieved Continuous Integration.

We have attained Continuous Delivery when we also add automated
release setup, so that we can move on to publish to production with just
one click.

If our process is so smooth and automated that we may reach automatic
production cutover, then we have Continuous Deployment.

DevOps Process

And when our process also includes the app’s operation and monitoring in
production -so that information is generated as feedback for planning
which functionalities should be developed from there- we can finally say
that we have a DevOps process.

Creation and monitoring of Continuous Integration processes

@ JUnitStable - GeneXus 17

File Edit View Layout Build Knowledge Manager Window Tools Test Help

] DB INHOCD. EE) JavaEnvironment ~ | Release ~ 5 | Android | 17.1-SNAPSHOT
Preferences ? X (@ SartPage X 4R TeamDevelopment X
JUnitStabl,
JUnitStable | | | Continuous Integration
"\& JUnitStable

49 Team Development

dh JavaEnvi Integration Pipelines Create @)
[T2 Back end -
= Frontend Status Name Version Environment Run Last Run Next Run
o Deployment Failure JUnitStable JUnitStable Java Environment 69 9/10/2020 17.. | 12/10/2020 10:31:51
: Success JUnitStableNew JUnitStable Java Environment 15 9/10/2020 17.. 121012020 17:26:48

GeneXus Cloud

822 Patterns

1. Vorkflow

Pipeline Activity

Run Status Run Date

15 Success 9/10/2020 17:26
14 6/10/2020 20:19
13 Failure 6/10/2020 20:18
12 6/10/2020 19:38
n 61012020 18:11
n Cailura £rnPMN 1200

Duration A
00:06:05
00:01:01
00:00:00
00:00:00
00:00:48

an.nneAa

As we've seen, in order to achieve the DevOps methodology, we must
make sure we achieve Continuous Integration; that is, after developing the
application, automate the integration of changes and validation.

It is possible to create and monitor continuous integration processes
(pipelines) from the GeneXus IDE and the GeneXus Server console.

Once we upload the KB to GXserver, if we go to Knowledge Manager /
TeamDevelopment we find the "Continuous Integration" tab where we can
create pipelines, view when they were executed, the commits made in
each execution, their result, and the complete log of each execution.

More information at:
https://wiki.genexus.com/commuwiki/servlet/wiki?40706

For more information on the use of the DevOps methodology in GeneXus,
visit this Wiki link: https://wiki.genexus.com/commuwiki/servlet/wiki?40706

GeneXus’

training.genexus.com
wiki.genexus.com

