
We have previously established the connection to SAP ERP and invoked

the GetList method of the Materials BAPI to receive the list of materials.

Our goal now is to run through this list and put it in the Product table of

our application.



First, note that in the definition of our Product transaction the Id is

autonumbered, and the name is Character of length 20.

However, in the BAPIMATLIST SDT structure we can see that the number

associated with the material is defined as a Character of length 18 and its

description as Character of length 40.

So we modify the structure of our transaction to be compatible with these

definitions. OK. We must now define the process that runs through the materials

list received from the ERP and puts it in the product table.



We create a procedure named UserUpdateProducts.

This procedure must receive the list of materials returned by the execution of the

GetList method, so we define the &MatRnList variable of the BapiMatList data type,

and set it as a collection.

We go to the Rules tab and define the corresponding Parm rule.

We need to run through this collection of materials, so we must define another

variable of BapiMatList type but this time to represent an element of the collection,

so we define it as simple and not as a collection.

OK. We now go to the source to run through the list of materials:

And for each of these elements, we must insert it as a new product in our table if it

does not exist, or update it if it already exists.

So we declare our Product transaction as a Business Component, and use the

InsertOrUpdate method to process the records.



Remember that Business Component is a transaction property that allows

triggering its logic outside of the transaction.

The methods we are looking at apply to both simple variables and Business

Component collections. In particular, the InsertOrUpdate method has a specific

behavior, because it first tries to insert the record, and if it fails due to a duplicate

key, it retrieves and updates it.

This is the behavior we need to meet this requirement since our goal is to always

keep the product table up to date, inserting new products or updating the

existing ones.

So we return to the procedure, and define the &Product variable, Business

Component.

In the source, we complete the code. After assigning the values for the Id and

product name, we apply the InsertOrUpdate method. We close the for and

declare the commit, which is necessary when working with Business

Components.



OK. At this point, we need an object that triggers these processes. So we create a

web panel named UpdateUserProducts and apply the Fiori for Web pattern. We

choose the ListReport floorplan, and indicate that its data is loaded from an SDT.

Remember that the SAPMaterialGetList process returns the list of materials and

the list of possible errors. The list of materials is handled internally to update our

products, so we take the Messages SDT as the data source.

This web panel will show the collection of errors, if any, and process the list of

materials.

We remove the actions on the grid, and check the corresponding properties to

include it in the Fiori lanunchpad and in the master page menu.

We save. Now let's go to its events.

When this object is opened, we want to call the process that invokes the GetList

method, show the errors, if any, and process the list of materials.

Therefore, in the Start event we define the call to the SAPMaterialGetList

procedure, defining the necessary variables.

Then we check if there were any errors and process the materials with messages

indicating if there were any failures or if it was performed correctly.



Before running, we must delete the test data to load the products from the

materials returned by the ERP. We press F5.

First, we check that no products have been loaded.

And now we go to the web panel to load the materials returned by the ERP.

We see that it was executed correctly and no errors or warnings were returned.

Finally, we go back to the products to check that they were loaded correctly.

Next, we will work with sales orders.




	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7

