
Database Update with Procedure-specific Commands

How to Insert Data

AttractionId AttractionName CountryId CityId CategoryId

1 Louvre Museum 2 1 1

2 The Great Wall 3 1 2

3 Eiffel Tower 2 1 2

4 Forbidden City 3 1 2

Insert, Update, Delete

1. Business Component: Insert(), Update(), Delete()

2. Procedure: New, For each, Delete

To update the database information using code, there are two
possibilities:

Do it using the transaction's business component, through its Insert,
Update or Delete methods (Save, and InsertOrUpdate), or do it
exclusively within a procedure, through the New, For each, and
Delete commands.

In other videos we study the first case in detail. Now we will focus
on the second one.

2

PROCEDURE ONLY

-New

-For each

-Delete
Insert, Update, Delete

It is very important to keep in mind that this second type of update
can only be performed in the Source of a procedure.
The commands we will study will not be valid anywhere else, such as
Panels or Web Panels events, but only here, in procedures.

3

Insert

Let's start with the command that allows inserting a record into
a table.

Insert, Update, Delete

New Command

AttractionId AttractionName CountryId CityId CategoryId

1 Louvre Museum 2 1 1

2 The Great Wall 3 1 2

3 Eiffel Tower 2 1 2

4 Forbidden City 3 1 2

5 Christ the Redeemer 1 2 2

It is literally ONE record and in ONE table.

Suppose that we have the Attraction transaction, which records
tourist attractions (where there will also be a Country transaction that
records the information of each country and its cities and a
Category, which records the categories in which the tourist
attractions are classified), and that we want to insert Christ the
Redeemer through a procedure in the table associated with
Attraction.

5

AttractionId AttractionName CountryId CityId CategoryId

1 Louvre Museum 2 1 1

2 The Great Wall 3 1 2

3 Eiffel Tower 2 1 2

4 Forbidden City 3 1 2

Insert, Update, Delete
New

AttractionId = 5
AttractionName = "Christ the Redeemer"

endnew

AttractionId AttractionName CountryId CityId CategoryId

1 Louvre Museum 2 1 1

2 The Great Wall 3 1 2

3 Eiffel Tower 2 1 2

4 Forbidden City 3 1 2

5 Christ the Redeemer 1 2 2

New Command

To this end, we have the New command executed in the Source of
the procedure, assigning a value to each of the attributes of the
table, for the record we want to insert. Here we will be working
directly with the table, completely detached from the transaction
that creates it. That is, the rules of the transaction matter, and
neither do the events, nor anything else. The New command is
completely indifferent to the transaction The only thing it pays
attention to is the composition of the database table into which it
will try to insert a record.

So, here the inferred attributes or transaction formulas are not
involved at all. They exist for the New command. The only
ones that matter are the table attributes. For this reason, in this case
we have assigned a value to all of them.

6

New

AttractionId = 5
AttractionName = "Christ the Redeemer"

endnew

AttractionId AttractionName CountryId CityId CategoryId

1 Louvre Museum 2 1 1

2 The Great Wall 3 1 2

3 Eiffel Tower 2 1 2

4 Forbidden City 3 1 2

5 Christ the Redeemer 1 2 2

New Command

Not assigned
attributes?

Insert, Update, Delete

Secondary attribute

Is this mandatory? Of course not. If we assign a value to an
attribute, it will be considered empty.
Thus, if we assign a value for AttractionName, attraction 5 will be
inserted without a name. Even if there is an error rule in the transaction
that prevents it. As we said, the transaction here only serves to give
existence to the table in the database. This is a first major difference
with the insertion through a Business Component.

7

AttractionId AttractionName CountryId CityId CategoryId

1 Louvre Museum 2 1 1

2 The Great Wall 3 1 2

3 Eiffel Tower 2 1 2

4 Forbidden City 3 1 2

New

AttractionId = 5
AttractionName = "Christ the Redeemer"

endnew

New Command

Not assigned
attributes?

Primary key attribute

Uniqueness
check

AttractionId AttractionName CountryId CityId CategoryId

0 Louvre Museum 2 1 1

1 The Great Wall 3 1 2

2 Eiffel Tower 2 1 2

3 Forbidden City 3 1 2

But, what if the primary key is not assigned?

An attempt will be made to insert an empty key record. As if we
had explicitly assigned 0.
If the primary key is not auto numbered, then if a record with that
ID 0 does not already exist in the table, it inserts it.
What if it already exists? It do anything. We will not see any
difference between having executed the New command and not
having done so.

That is, the New command controls the uniqueness of records. It
will not insert a duplicate key record.

8

AttractionId AttractionName CountryId CityId CategoryId

1 Louvre Museum 2 1 1

2 The Great Wall 3 1 2

3 Eiffel Tower 2 1 2

4 Forbidden City 3 1 2

New

AttractionId = 5
AttractionName = "Christ the Redeemer"

endnew

AttractionId AttractionName CountryId CityId CategoryId

1 Louvre Museum 2 1 1

2 The Great Wall 3 1 2

3 Eiffel Tower 2 1 2

4 Forbidden City 3 1 2

5 Matisse Museum 2 2 1

New Command

Insert, Update, Delete

Primary key attribute Uniqueness
check

The same will happen if the attraction with ID 5 already exists in the
table when we are going to execute the New command. Here it will
not do anything at all, due to the uniqueness control.

And this is true for both primary and candidate keys.

9

AttractionId AttractionName CountryId CityId CategoryId

1 Louvre Museum 2 1 1

2 The Great Wall 3 1 2

3 Eiffel Tower 2 1 2

4 Forbidden City 3 1 2

New

AttractionId = 5

endnew

New Command
Unique index

Insert, Update, Delete

Candidate key
attribute

Uniqueness
check

imagine, for example, that AttractionName is a candidate key; i.e.,
we have a unique index defined over this attribute.

And let's suppose that the record of ID 3 had as AttractionName value
the same one we are now trying to insert as record 5.
When the New command is executed, it will do nothing. This is because
it will find that there already exists a record with the same
AttractionName as the record we want to insert.

10

AttractionId AttractionName CountryId CityId CategoryId

1 Louvre Museum 2 1 1

2 The Great Wall 3 1 2

3 Eiffel Tower 2 1 2

4 Forbidden City 3 1 2

New

AttractionName = "Christ the Redeemer"

endnew

New Command

Insert, Update, Delete

Not assigned
attributes?

Primary key attribute

auto numbered

AttractionId AttractionName CountryId CityId CategoryId

1 Louvre Museum 2 1 1

2 The Great Wall 3 1 2

3 Eiffel Tower 2 1 2

4 Forbidden City 3 1 2

5 Christ the Redeemer 1 2 2

AttractionId ?&AttractionId = AttractionId

Now, going back to what we were wondering about what happens
when we don't specify a value for the primary key... if it is auto
numbered, then it will never fail due to a duplicate primary key: it will
always insert a record with the next number. How do we know what
number was assigned to it? The value in the attribute is stored in
memory immediately after the New. Thus, we can, for example, assign
it to a variable so as not to lose it the next time the attribute is used.

11

AttractionId AttractionName CountryId CityId CategoryId

1 Louvre Museum 2 1 1

2 The Great Wall 3 1 2

3 Eiffel Tower 2 1 2

4 Forbidden City 3 1 2

New Command

Insert, Update, Delete

Not assigned
attributes?

Foreign key attribute

New

AttractionId = 5
AttractionName = "Christ the Redeemer"

endnew

Referential
integrity
checks?

NO

What about attributes that are foreign keys? Such as CountryId,
CityId, CategoryId.

Does the new command perform referential integrity checks?

The answer is no. This is because the command update was
created to have a fast update method, with the best possible
performance. Performing these checks always slows down the
operation. When dealing with a single record this matter,
but let's think about what happens if we have to insert millions of
records.

12

New

AttractionId = 5
AttractionName = "Christ the Redeemer"
CountryId = 15
CityId = find(CityId, CityName
CategoryId = find(CategoryId, CategoryName

endnew

AttractionId AttractionName CountryId CityId CategoryId

1 Louvre Museum 2 1 1

2 The Great Wall 3 1 2

3 Eiffel Tower 2 1 2

4 Forbidden City 3 1 2

New Command

Insert, Update, Delete
Referential

integrity
checks?

NONot assigned
attributes?

Foreign key attribute

So, for example, if for the new record we want to assign a country
with ID 15, the New command will not check that there is a
country with that value in the table that stores the countries. It will
insert the record without any problem. And the database will be
left in an inconsistent state.

go to GeneXus to try it.

13

New Command

We have the three transactions with data. In particular, Attraction
has these four records.
AttractionId is auto-numbered.

We have created this web panel where the user will press the
button, which will call a procedure that will try to insert a

new record in the Attraction table for Christ the Redeemer.
The procedure will return the AttractionId that the database
assigned to the inserted record. With this we create the message
that the user will see in the panel.

try it.
Attraction 5 was inserted. Let's see... and here is, indeed, attraction
5 inserted in the table.

14

New Command

Now, let's see what happens if we want to assign a non-existent
country for the new record. Such as this one. We run it.
The program crashed, when in fact we expected it to have
inserted the record without any problem, since we said that the
New command check referential integrity. What
happened then?

It is true that the program is not checking referential integrity,
but the database is. So the New command tried to perform the
insertion, but the database would not let it, and threw an
exception.

By default, the database checks referential integrity. We can
turn off this control, by means of a property.
But what we clearly see is that the New command is not doing
so. why we have to be very careful when using this
command, because this type of program crash is unacceptable
to the end user.

15

New

AttractionId = 5
AttractionName = "Christ the Redeemer"
CountryId = 15

endnew

AttractionId AttractionName CountryId CityId CategoryId

1 Louvre Museum 2 1 1

2 The Great Wall 3 1 2

3 Eiffel Tower 2 1 2

4 Forbidden City 3 1 2

New Command

Insert, Update, Delete
Referential

integrity
checks?

NONot assigned
attributes?

Foreign key attribute

What if we leave a foreign key unassigned?

Again, the New command will not perform any check and will try to
insert the record. If the database makes them, then it will throw an
exception like the previous one that will stop the program if it is not
caught and handled by it.
We might think that if the attribute accepts nulls, it will never fail
because the database will allow that null for the foreign key.
However, we must be careful about how the database interprets
that it is a null and not an empty value. We will discuss this in
another video.

16

New

AttractionId = 5
AttractionName = "Christ the Redeemer"

endnew

AttractionId AttractionName CountryId CityId CategoryId

1 Louvre Museum 2 1 1

2 The Great Wall 3 1 2

3 Eiffel Tower 2 1 2

4 Forbidden City 3 1 2

New Command

Insert, Update, Delete

COMMIT?

AttractionId AttractionName CountryId CityId CategoryId

1 Louvre Museum 2 1 1

2 The Great Wall 3 1 2

3 Eiffel Tower 2 1 2

4 Forbidden City 3 1 2

5 Christ the Redeemer 1 2 2

Commit

If everything is OK, then the New command inserts a record in the
table. And what happens with the Commit?

If we look at the navigation of the procedure that we executed a
while ago, it is showing a warning that says that the program could
be called by another program and that the Commit on Exit property
is set to Yes. We can see it here.
This property is also found in the other object that operates on the
database: the transaction object. Here we see it, below the
Transaction integrity group (in another class we will study this
important topic, which is how to define and achieve transactional
integrity).

The important thing is that if this property is set to Yes, it means that
an automatic Commit will be added in the object's source code (as
long as the object performs some operation on the database).

17

New Command

Insert, Update, Delete

In the transaction, at the end of the operation on the header and its
lines.

18

New

AttractionId = 5
AttractionName = "Christ the Redeemer"

endnew

AttractionId AttractionName CountryId CityId CategoryId

1 Louvre Museum 2 1 1

2 The Great Wall 3 1 2

3 Eiffel Tower 2 1 2

4 Forbidden City 3 1 2

New Command

Insert, Update, Delete

COMMIT?

AttractionId AttractionName CountryId CityId CategoryId

1 Louvre Museum 2 1 1

2 The Great Wall 3 1 2

3 Eiffel Tower 2 1 2

4 Forbidden City 3 1 2

5 Christ the Redeemer 1 2 2

Commit

In a procedure object, at the end of the Source. That's why we didn't
have to specify it. If the property were turned off, then we would
have to explicitly write the Commit command, just as we did with
Business Components.

19

Uniqueness
check

Referential Integrity check Rule/Event Execution

New command

AttractionId AttractionName CountryId CityId CategoryId

1 Louvre Museum 2 1 1

2 The Great Wall 3 1 2

3 Eiffel Tower 2 1 2

4 Forbidden City 3 1 2

AttractionId AttractionName CountryId CityId CategoryId

1 Louvre Museum 2 1 1

2 The Great Wall 3 1 2

3 Eiffel Tower 2 1 2

4 Forbidden City 3 1 2

5 Christ the Redeemer 1 2 2

Category Table

To sum up what we've seen so far:

When trying to insert a record into a table using the New
command in a procedure, the command performs uniqueness
controls by primary key and candidate keys, thus ensuring that a
record is not added to the table that duplicates the key. If it finds
a duplicate key then it does nothing.

If any attribute of the record to be inserted is a foreign key, the
New command will not perform a referential integrity check.
That is to say, it will not search the table that is referenced for
the existence of a record with the value that we want to use, in
order to insert the record. BUT if the database has referential
integrity declared, then it will perform the check and cancel the
program if integrity is being violated. If it doesn't have
referential integrity declared, then the insertion of the record
will be allowed regardless of whether it violates integrity.

And regarding the rules and events found in the transaction
associated with the table, these clearly have nothing to do here.
Let's remember that for the New command only the table
matters, not where it comes from.

20

Uniqueness
check

New command

AttractionId AttractionName CountryId CityId CategoryId

1 Louvre Museum 2 1 1

2 The Great Wall 3 1 2

3 Eiffel Tower 2 1 2

4 Forbidden City 3 1 2

New

AttractionId = 3

CountryId = 2
CityId = 1
CategoryId = 3

endnew

New

AttractionId = 3

CountryId = 2
CityId = 1
CategoryId = 3

When duplicate

endnew

for each Attraction
CategoryId =

3
endfor

3

However, we might want to perform some action if the record is
duplicated by a key. For example, instead of inserting it, update
it. In the example, we may want to change the value of
CategoryId.

To this end, the when duplicate clause is used. The code it
contains will only be executed when the primary key or a
candidate key is found to be duplicated. If what we want in that
case is to update the record, then we have to do it inside a For
each [C], as we see here. Values are not assigned directly to the
attributes to be modified, as you might think; instead, this has to
be done by writing a For each, without having to filter by
AttractionId, because it is already implied. This is the way the
New command understands that we want to update those
attributes of the record it found duplicated. In this case, update
only the CategoryId attribute. Here it would be possible update
attributes of the extended table.

21

New Command

Not assigned attributes Depending on the context

For each Country.City

print cityInfo

new

CategoryId = 2

endnew

endfor

AttractionId AttractionName CountryId CityId CategoryId

1 Mattisse Museum 2 2 1

2 The Great Wall 3 1 2

3 Eiffel Tower 2 1 2

4 Forbidden City 3 1 2

AttractionId AttractionName CountryId CityId CategoryId

1 Mattisse Museum 2 2 1

2 The Great Wall 3 1 2

3 Eiffel Tower 2 1 2

4 Forbidden City 3 1 2

5 Paris attraction 2 1 2

6 Nice attraction 2 2 2

CountryId CityId CityName

1 1 Sao Paulo

1 2 Rio de Janeiro

2 1 Paris

2 2 Nice

3 1 Beijing

AttractionId AttractionName CountryId CityId CategoryId

1 Mattisse Museum 2 2 1

2 The Great Wall 3 1 2

3 Eiffel Tower 2 1 2

4 Forbidden City 3 1 2

5 Paris attraction 2 1 2

Returning to the issue of what happens to the attributes of the
New command table that are not assigned a value, we had said
that they remain empty, but it actually depends on the context.
They are empty if they are not instantiated in the context in which
the New command is found; i.e. if they have no value.

For example, suppose we are running through the cities of France
with a For each command and print each one, for example. In
addition, we immediately execute the New command that we are
looking at.

First of all: How does GeneXus determine the base table of the
New command? By paying attention only to the attributes to
which a value is being assigned. It has to find a table in the
database that contains them. It will clearly be Attraction.

Does this CityName take part? No, it . If it is there, it is
because in the context in which we have written the New
command, we know that it is instantiated. This CityName will be
that of the For each. In sum, for each city, we want to insert a new
tourist attraction with the name of the city and category 2.

OK, but what attraction, country and city identifier will be
assigned to the record to be inserted? In this case, the only empty
one will be AttractionId, which is not instantiated in the context,
because it in the extended table of the For each. And it is not

22

received by parameter in the attribute either, which is the other instantiation method we
know.
So if AttractionId is auto numbered, then when the record is inserted the database will
give the next one to the last number.
However, CountryId and CityId are instantiated in the context. Therefore, they will be
assigned this context value. In this case, the country and city in which we are positioned
in the For each.

And then the same will happen for the next city in the For each...

New Command

For each Country.City

print cityInfo

new

CategoryId = 2

endnew

endfor

AttractionId AttractionName CountryId CityId CategoryId

1 Mattisse Museum 2 2 1

2 The Great Wall 3 1 2

3 Eiffel Tower 2 1 2

4 Forbidden City 3 1 2

5 2 1 2

6 2 2 2

CountryId CityId CityName

1 1 Sao Paulo

1 2 Rio de Janeiro

2 1 Paris

2 2 Nice

3 1 Beijing

For each Country.City

print cityInfo

new

CategoryId = 2

endnew

endfor

Not assigned attributes Depending on the context

WARNING

Base table:
CATEGORY!!!!

What would happen if we wanted the same two records to be
inserted in Attraction, but with an empty AttractionName?

It would seem that by simply not assigning a value to
AttractionName we would be implementing it. However, if we look
at the attributes that GeneXus will use to determine its base table,
that of the New, there is only CategoryId. Therefore, it will not
choose Attraction as the base table, but Category.

So, how do we have it choose the Attraction table? One possibility
is to explicitly assign the empty value for AttractionName. Because
in this way, by naming this attribute, it will participate in
determining the base table and it will make the base table to be
Attraction instead of Category.

23

For each Country.City

print cityInfo

new

CategoryId = 2

endnew

endfor

New Command

Defined by AttractionName

Not assigned attributes Depending on the context

AttractionId AttractionName CountryId CityId CategoryId

1 Mattisse Museum 2 2 1

2 The Great Wall 3 1 2

3 Eiffel Tower 2 1 2

4 Forbidden City 3 1 2

5 2 1 2

6 2 2 2

CountryId CityId CityName

1 1 Sao Paulo

1 2 Rio de Janeiro

2 1 Paris

2 2 Nice

3 1 Beijing

The other option is to use the Defined by clause that allows adding
more attributes to be considered together with the others in
determining the base table.

24

new

Attribute1 = expression1

Attribute2 = expression2

AttributeN = expressionN

Summary

Defined by Attribute1, Attribute2 AttributeN

When duplicate

for each BaseTransaction
AttributeI = expressionI

AttributeK = expressionK

endfor

Uniqueness
check

Referential
Integrity check

New command

COMMIT

Blocking NumericExpression

In short, the New command is used to insert a record into a
table. The table is determined by the attributes assigned to it. If
a Defined By clause is added, then the attributes listed there
also participate. Here the concept of an extended table does
not make any sense.

On the other hand, we had seen that the only programmatic
control performed by the New command is the uniqueness
control. And that if a record was found with the key we are
trying to insert, then the New command did nothing.... Unless
we had programmed the When Duplicate clause.

We had said that there, among other commands, we can
include a For each to update attributes of the record that was
found duplicated. Can all attributes be updated? For example,
can the primary key be updated there? The answer is no, but it
will be possible update attributes of the extended table.

Finally: for the record to be committed in the database we must
make sure that the Commit command is executed. In a
procedure, by default, an implicit Commit is placed at the end.
But we can explicitly write Commits in the Source, where it is
convenient for us.

We will not see it here, but optionally a Blocking clause can be
specified, which allows making insertions in the database in

25

blocks, instead of record by record, as long as the New command is inside a repetitive
structure. This will clearly be used for efficiency reasons, when batch insertions are very
large.

training.genexus.com
wiki.genexus.com

