Starting a process from a GeneXus object using the Workflow API

The travel agency decided to modify its ticket reservation process and include some new
functionalities.

First it requested the possibility of allowing agency customers to enter their own reservations
through the website.

Customers must be logged on the site and provide the reservation data (date, departure
airport, arrival airport, number of passengers, etc.), to allow the system to create a
reservation and start the FlightTicketReservation process to later indicate the
TicketReservation task as completed.

When the passenger is already a customer of the agency, once the TicketReservation task is
completed, the following task to execute is the first task in the ValidateReservation
subprocess: ContactAirlines, which in turn is a multi-instance task.

= e
& (] . = Validate aticket reservation

New reservation request l

P No é = .
Isthe passengera custmer? " Racord Cusiomer F
. Contact sirlires
’ 11}

& Notfyzbout Do e ancihe
izt e S
hack followup 4
No/
<
v Check availabiliy
Invalid reservaion ‘ Tickets notavailabe
Are the tickets availabie? 64..6
A
o o
Customerwih Notavailable tickes
Rasarnvaion Ticketavailabe | Ticketavailste
T & Addcustomer &
‘.;, vaiia Natavaiable tidets information required for Evaluate customer

traveliing

Resgpyaen _ \
Rejected bycustomercae
menager

The systems must also notify each person able to contact airlines that the instances of the
ContactAirlines task are available to be executed. And lastly, substitute the task type
notifying customers in regards to the reservation being authorized so that the notification is
done in person.

Let’s start by the customer entering the reservation in the website.

To that end we will use a web panel called TravelAgency. This web panel includes variables

on screen with which the user will enter the reservation data, in addition to a Confirm button.

Page 1

You are logged as: | &CustomerEmail

Customer name: | & CustomerMame

Flight ticket reservation

Please enter you reservation information:

Date ‘ℜer\rationnate |
Quantity |ℜervat\othy |
Departure Airport
‘&.ResarvationDepartureAirport\d v| . |&Reser\.‘at\onDaparturaCityName | 5 |&RaservationDepartureCountryName ‘
Avrrival Airport
|&'.Reservat\DnArrivaIAirporﬂd v‘ . |ℜervationAmvalCityName | . |&Reser\.‘atmnArriva\CountryNamE ‘

For simplifying purposes in this demo, we will assume that the customer entering is
Customer 1 who is already logged in, so we will not include the login controls. If we go to the
Start event we will see the code to simulate this.

1{JEvent Start

21 gCustomerId = 1 // Hardeoded only for demo uses
5; ECustomerEmail = GetLoggedUser (iCustomerId)

45 ECustomerName = GetCustomerName {£CustomerId)

5; Endevent

If we press the Confirm button the Enter event will be executed and several tasks will be
done.

T Event Enter
a //Create a new reservation with the entered data
g gReservationId = NewReservation (ZReservationDate, &ReservationQty, &CustomerId,
10 g&ReservationDeparturefirportld, &éReservationfrrivalairportId)
11
1z //Create a new FlightTicketReservation process instance
13 iWorkflowServer.Connect ("WFADMINISTRATCR", "WFADMINISTRATCR"™)
14 gWorkflowProcessDefinition = &sWorkflowServer.GetProcessDefinitionByName ("FlightTicketReservation™)
15 tWorkflowProce=ssInstance = gWorkflowProcessDefinition.CreateInstance ()
16 EWorkflowProcessInstance.Subject = 'FlightTicketReservation process started from GeneXus Menu'
17 tReservationIdWorkflowApplicationData = &WorkflowProcessInstance.GetApplicationDataByName ("ReservationId™)
8 gReservationIdWorkflowhApplicationData.NumericValue = fReservationId
18 tWorkflowProcessInstance.Start() // Initiate the FlightTicketReservation process instance
20
21 J/Mark the TicketReservation task as completed
22 gWorkflowhActivity = gWorkflowProcessDefinition.GetActivityByName ("TicketReservation')
23 gWorkflowWorkitem = &WorkflowProcessInstance.GetWorkitemByActivity (eWorkflowhoctivity)
24 gWorkflowWorkitem.Complete ()
Z5 Commit
263 Endevent

Page

The NewReservation method is invoked first to create a reservation in the database. Then,
using Workflow data types, the FlightTicketReservation process is initiated and the
TicketReservation task is marked as completed.

These data types starting by the prefix Workflow are GeneXus data types which allow for the
application to interact with the Workflow engine.

In order to use a Workflow data type and interact with the engine’s API we must first define
a variable with that data type. Then, with the help of the context information we can choose
the method or property we want to use.

T80 Event Enter
8 //Create a new reservation with the entered data
g tRezervationId = NewReservation (fReservationDate, fReservationQrty, sCustomerId,
0 &ReservationDeparturefirportId, &dReservationdrrivaldirportId)
1
2 //Create a new FlightTicketReservation process instance
3 tWorkflowServer.Connect ("WFADMINISTRATCOR"™, "WFADMINISTRATCR™)
4 ocessDefinition = sWorkflowServer.GetProcessDefinitionByName ("FlightTicketReservation™)
s ' “w GetProcessDefinitionByMName -

: = 1F14 L '
& =, 5ubject Flight & GetProcessinstanceByld ted from GeneXus Menu
- iR rvati 13 ionD. = &I 5 " i "
7 mi\ese_ vatl pp___cat__,._iata N &W -4 GetProcesslnstanceBySubject icationDataByName ("ReservationId"™)
8 iRezervati pplicationData.Nume _ .

¢ GetSettingByld

3 geWorkflowProcessInstance.Start() // Initia _g ¥ process instance
q o GetWorkitemByld b
1 //Mark the TicketReservation task as compl v LfstActf\.rftfes j
2 SWorkflowlhetivity = &WorkflowProcessDefini :v L?StACtI.VItIESOrdEFBy Reservation')
3 sWorkfl rkitem = &WorkflowProcessInstan ¥ ListBusinessEventinstances Flowhctivity)
4 sWorkfl orkitem.Complete () “ ListBusinessEventlnstancesOrderBy
5 Commit ‘i ListBusinessEvents -
64l Endevent

Workflow data types are classified into a hierarchy of classes.

Classes hierarchy chart

i Workflow's Data Type Class Hierarchy |

Server |

The highest class is the Server class on which 3 other classes depend, namely: Process
Definition, which allows us to access the components of a process diagram, Process
Instance, which allows us to access an instance of a process under execution, and
Organization Model, which allows us to access the information regarding the company’s
organizational structure, such as roles and users.

Page3

The Server class is the entry point of the types hierarchy and its methods enable us to
access any workflow data type.

The data types most frequently used are:

Most used Workflow Data Types

-WorkflowProcessDefinition
-WorkflowProcessinstance
-WorkflowWorkltem

-WorkflowContext

-WorkflowApplicationData

With WorkflowProcessDefinition we can access several properties of the diagram, such as
name, version, tasks including it (which we call activities) and we can also create an
execution instance of the process with the Createlnstance method, based on that definition.

Most used Workflow Data Types

v Diagram name

v" Diagram version
v Activities (tasks)
v Create Instance

-WorkflowProcessDefinition

-WorkflowProcessinstance

-WorkflowWorkltem

-WorkflowContext

-WorkflowApplicationData

Using WorkflowProcessInstance we can find the definition of the process on which the
instance is based, the issue that the instance deals with, and the collection of workitems that

Page4

are part of the instance. Through the GetApplicationByName method we can retrieve
relevant data by using its name.

Most used Workflow Data Types

-WorkflowProcessDefinition

v Process Definition

v Subject

v Workitems

v’ GetApplicationByName

-WorkflowProcessinstance
-WorkflowWorkltem

-WorkflowContext

-WorkflowApplicationData

The WorkflowWorkItem class enables us to know the work that needs to be done by
participants in the context of an activity, within the process instance.

Its Processinstance provides us with information on the process instance to which the
workitem belongs, and the Activity property return the activity that generated the workitem.

The Assign method enables us to assign a workitem to a specific user and the Complete
method enables us to end the execution of the workitem.

Most used Workflow Data Types

-WorkflowProcessDefinition

-WorkflowProcessinstance

¥" Process instance
-WorkflowWorkltem__| v Activity

v Assign

v Complete

-WorkflowContext

-WorkflowApplicationData

Page5

The WorkflowContext data type provides us with information on the context of execution of
an application associated with an activity. This context is automatically instanced when the
application associated with the activity (that is, the task) is a GeneXus object that is part of
the same KB that contains the process diagram.

This automatic instancing of the context enables us to know the values of the process
definition, the instance of the process and the workitem associated with the activity.

Most used Workflow Data Types

-WorkflowProcessDefinition
-WorkflowProcessinstance

-WorkflowWorkltem

v" Process Definition
-WorkflowContext — . process Instance
v Workitem

-WorkflowApplicationData

Lastly, the WorkflowApplicationData data type is the one we use when we want to work with
relevant data, like when we store relevant data that we obtain through the
GetApplicationDataByName method.

Most used Workflow Data Types

-WorkflowProcessDefinition
-WorkflowProcessinstance
-WorkflowWorkltem

-WorkflowContext

-WorkflowApplicationData {,/ Relevant datas

Now back at the event of the webpanel that invokes the FlightTicketReservation process, we
have here a defined variable, &WorkflowServer, of the WorkflowServer type. In practice we

Page6

always use names of variables matching the Workflow data types to make it easier to
identify them.

The first operation we perform with the WorkflowServer data type is to connect to the
workflow engine using the administrator password.

f/Create a new FlightTicketReservation process instance
rkflowServer.Connect ("WFADMINISTRATCR", "WFADMINISTEATCOR™)
WP Definition = aWorkflowServer.GetProcessDefinitionByName ("FlightTicketReservation™)

rkf

sWorkflow cezsDefinition.CreateInstance ()
.Subject = 'FlightTicketReservation process started from GeneXus Menu'
1 Da &7 nstance.GetApplicationDataByName ("ReservationId™)

= sWorkflowProcess

NumericValue = &R I
/ Imitiate the FlightT Reservation process instance

We then obtain the definition of the FlightTicketReservation process based on its hame and
save it in a variable of the WorkflowProcessDefinition type.

Once we have the definition we create an instance in the process with the Createlnstance
method. Then we change subjects so as to recognize the process easily in the input tray.

Afterwards, we load relevant data Reservationld with the reservation identifier we created
previously and then start the instance with the Start() method.

The following code lines are used to mark the TicketReservation task as completed.

ion.GetBAoctivityByName ('TicketReservation')

we . .GetWorkitemByRAerivitcy (&W

orkflowhetivity)
Commit

First we obtain the TicketReservation activity from the definition of the process, and with
that activity we obtain the workitem corresponding to the task under execution in the
process. Then we mark the workitem (the task) as completed.

We should note that following the Complete() method there is a Commit. The changes made
using the workflow data types are included within the application’s Logic Work Unit.

However, workflow operations to not perform Commit, so we must make sure that we
define the UTL in the application correctly and do the Commit in the end. In this case, we did
the workflow operations on a webpanel, so we will need to add the Commit when we finish
them.

These workflow data types we saw are a subgroup of all the ones available, and we can do
many tasks by code, through the API of the workflow engine.

Further information on this topic is available at the following link.

Page7

Classes hierarchy chart

http://wiki.gxtechnical.com/commuwiki/serviet/hwiki?Category%3AWorkflow+Data+Types,

Page8

