

P
ag

e1

Starting a process from a GeneXus object using the Workflow API

The travel agency decided to modify its ticket reservation process and include some new

functionalities.

First it requested the possibility of allowing agency customers to enter their own reservations

through the website.

Customers must be logged on the site and provide the reservation data (date, departure

airport, arrival airport, number of passengers, etc.), to allow the system to create a

reservation and start the FlightTicketReservation process to later indicate the

TicketReservation task as completed.

When the passenger is already a customer of the agency, once the TicketReservation task is

completed, the following task to execute is the first task in the ValidateReservation

subprocess: ContactAirlines, which in turn is a multi-instance task.

The systems must also notify each person able to contact airlines that the instances of the

ContactAirlines task are available to be executed. And lastly, substitute the task type

notifying customers in regards to the reservation being authorized so that the notification is

done in person.

Let’s start by the customer entering the reservation in the website.

To that end we will use a web panel called TravelAgency. This web panel includes variables

on screen with which the user will enter the reservation data, in addition to a Confirm button.

P
ag

e2

For simplifying purposes in this demo, we will assume that the customer entering is

Customer 1 who is already logged in, so we will not include the login controls. If we go to the

Start event we will see the code to simulate this.

If we press the Confirm button the Enter event will be executed and several tasks will be

done.

P
ag

e3

The NewReservation method is invoked first to create a reservation in the database. Then,

using Workflow data types, the FlightTicketReservation process is initiated and the

TicketReservation task is marked as completed.

These data types starting by the prefix Workflow are GeneXus data types which allow for the

application to interact with the Workflow engine.

In order to use a Workflow data type and interact with the engine’s API we must first define

a variable with that data type. Then, with the help of the context information we can choose

the method or property we want to use.

Workflow data types are classified into a hierarchy of classes.

The highest class is the Server class on which 3 other classes depend, namely: Process

Definition, which allows us to access the components of a process diagram, Process

Instance, which allows us to access an instance of a process under execution, and

Organization Model, which allows us to access the information regarding the company’s

organizational structure, such as roles and users.

P
ag

e4

The Server class is the entry point of the types hierarchy and its methods enable us to

access any workflow data type.

The data types most frequently used are:

With WorkflowProcessDefinition we can access several properties of the diagram, such as

name, version, tasks including it (which we call activities) and we can also create an

execution instance of the process with the CreateInstance method, based on that definition.

Using WorkflowProcessInstance we can find the definition of the process on which the

instance is based, the issue that the instance deals with, and the collection of workitems that

P
ag

e5

are part of the instance. Through the GetApplicationByName method we can retrieve

relevant data by using its name.

The WorkflowWorkItem class enables us to know the work that needs to be done by

participants in the context of an activity, within the process instance.

Its ProcessInstance provides us with information on the process instance to which the

workitem belongs, and the Activity property return the activity that generated the workitem.

The Assign method enables us to assign a workitem to a specific user and the Complete

method enables us to end the execution of the workitem.

P
ag

e6

The WorkflowContext data type provides us with information on the context of execution of

an application associated with an activity. This context is automatically instanced when the

application associated with the activity (that is, the task) is a GeneXus object that is part of

the same KB that contains the process diagram.

This automatic instancing of the context enables us to know the values of the process

definition, the instance of the process and the workitem associated with the activity.

Lastly, the WorkflowApplicationData data type is the one we use when we want to work with

relevant data, like when we store relevant data that we obtain through the

GetApplicationDataByName method.

Now back at the event of the webpanel that invokes the FlightTicketReservation process, we

have here a defined variable, &WorkflowServer, of the WorkflowServer type. In practice we

P
ag

e7

always use names of variables matching the Workflow data types to make it easier to

identify them.

The first operation we perform with the WorkflowServer data type is to connect to the

workflow engine using the administrator password.

We then obtain the definition of the FlightTicketReservation process based on its name and

save it in a variable of the WorkflowProcessDefinition type.

Once we have the definition we create an instance in the process with the CreateInstance

method. Then we change subjects so as to recognize the process easily in the input tray.

Afterwards, we load relevant data ReservationId with the reservation identifier we created

previously and then start the instance with the Start() method.

The following code lines are used to mark the TicketReservation task as completed.

First we obtain the TicketReservation activity from the definition of the process, and with

that activity we obtain the workitem corresponding to the task under execution in the

process. Then we mark the workitem (the task) as completed.

We should note that following the Complete() method there is a Commit. The changes made

using the workflow data types are included within the application’s Logic Work Unit.

However, workflow operations to not perform Commit, so we must make sure that we

define the UTL in the application correctly and do the Commit in the end. In this case, we did

the workflow operations on a webpanel, so we will need to add the Commit when we finish

them.

These workflow data types we saw are a subgroup of all the ones available, and we can do

many tasks by code, through the API of the workflow engine.

Further information on this topic is available at the following link.

P
ag

e8

