
Table indexes

Primary, Foreign, and User Indexes



Indexes

Database index Book index 

The concept of a "database index" is similar to the concept of a "book index"
which allows you to access specific content without having to go through all the
pages of the book.

In a database, then, an index is a structure that provides quick access to the
records of a table, increasing the speed of operations and allowing you to search
data without having to run through the entire table sequentially.



For example:

CUSTOMER

CustomerId CustomerName

1 Jonathan

2 Alexander

3 Peter

4 Susan

5 Christopher

6 Ann

CustomerId CustomerName

2 Alexander

6 Ann

5 Christopher

1 Jonathan

3 Peter

4 Susan

Index by CustomerName

CUSTOMER

Consider, for example, the Customer table. If you want to search for the record
corresponding to the name Christopher, you must run through each row until you
find it. On the other hand, if you have an index defined by CustomerName, you can
access the record directly without having to run through the whole table
sequentially.

Now that learned the concept of index, note what indexes are automatically
created by GeneXus and how developers can create their own indexes as needed.



Indexes automatically created by GeneXus.

Attraction Transaction ATTRACTION Table 

GeneXus automatically creates:

• Primary index
• Foreign index

GeneXus automatically creates indexes that not only allow efficient access to the
tables but also perform efficient referential integrity checks.

Consider the structure of the Attraction transaction.
•Note that AttractionId is the primary key.
•CountryId and CategoryId are foreign keys.

In the KB Explorer window, below the transaction itself you can see the associated
table. When opening it, you can also see the Indexes tab that shows the indexes
automatically created by GeneXus. All these indexes have a name, the attribute by
which that index is defined, and their order. While it can be ascending or
descending, it is ascending by default.

Primary index: This index called IAttraction over the primary key AttractionId is
used to control the uniqueness of the record; that is, that there two tourist
attractions with the same identifier. But it also controls, for example, that at the
moment of creating a tour to that attraction, the AttractionId value indicated in the
tour previously exists as the primary key in the ATTRACTION table.

Primary index is used to:
• Efficiently perform reference integrity checks.
• Make referential integrity checks when inserting or modifying a foreign key

value.

GeneXus automatically defines all primary indexes for the identifying
attributes.



Next, look at the IAttraction1 and IAttraction2 foreign indexes over the foreign keys
CategoryId and CountryId, respectively. These foreign indexes are also automatically
created by GeneXus, and are used to efficiently perform reference integrity checks.

For example, if you want to delete the category with identifier 2, this index checks that
there are no related records in Attraction with the value CategoryId = 2.



User indexes: Duplicate / Unique

Unique index: Candidate key

• GeneXus automatically controls its 
uniqueness.

Another name criteria:
UAttraction1 User index

What if you need to make a list of tourist attractions in alphabetical order? It
would be very convenient to have an index over the name of the attractions.

So, define a user index by the AttractionName attribute.

User indexes are, therefore, indexes defined by the developer to perform
different searches efficiently.

You may wonder: Why these indexes also automatically created by
GeneXus? Simply because they are not necessary for making referential
integrity checks.
Remember that it is possible to sort a table by any attribute, or set of
attributes, when necessary.

An index will accept duplicates when its values can be repeated. Think, for
example, of the names of people that can be repeated. If you need an index to
define an alphabetical order by the names of the people, this index must
accept duplicate values; names can be repeated.

If, on the other hand, you indicate that the index is Unique, you will be defining
that the value of that attribute, or set of attributes by which the index is being
defined, cannot have a repeated value. GeneXus will automatically control the
uniqueness of its value.

In this case, it will be said that the attribute, or the set of attributes by which
the index is being defined, is a candidate key, since GeneXus will control its
uniqueness as it does with the primary key, although it is not the primary key
of the transaction.



At runtime

Note, for example, that the Eiffel Tower has been entered.

When trying to enter a new tourist attraction called Eiffel Tower,
regardless if you type it in lowercase... GeneXus automatically controls the
uniqueness of the attraction name, and displays a message indicating that the
name already exists.

Likewise, by defining the corresponding unique indexes, we can control that no
categories or countries with the same name are entered.



TRIP SUPPLIER
1 1

Unique index by SupplierId

1-1 relationship

Candidate key

TripId TripDate

1 10/10/2020

2 11/10/2020

3 12/12/2020

TripId TripDate SupplierId

1 10/10/2020 2

2 11/10/2020 1

3 12/12/2020 4

SupplierId SupplierName

1 First Supplier

2 Second Supplier

3 Third Supplier

4 Fourth Supplier

Suppose that a tour is run by only one provider, and one provider runs a single
tour. So, there is a 1-1 relationship between both entities.

How can this be represented in GeneXus?
We can think of a 1-1 relationship as a particular case of a 1-N relationship, right?
Because N represents and, in particular, includes 1.
So, the Provider's identification attribute is added as a foreign key in the Tour,
although it could be done the other way around as it is a 1-1 relationship.

It must be checked that the value of SupplierId is not repeated in Trip, and thus
make sure that a tour or trip has a single provider, and that one provider is in
charge of only one tour. How can it be done?
By defining a unique index over the foreign key SupplierId in TRIP.

In this way, the SupplierId attribute will be a candidate key in Trip, and
GeneXus will automatically control its uniqueness.

We will return to the 1-1 relationship later.



training.genexus.com
wiki.genexus.com


