
How to list related information

Nested For Each Commands



Now, suppose that the travel agency has requested a list that shows all
the tourist attraction categories, and for each category, all its
attractions.

Note that the greatest difference between this listing and the one we
had previously implemented is that now we want to group the
attractions by category.

The listing below is required:

Title

Categories

ColumnTitles

Attractions



In the Layout, we added a new printblock.

Categories is the name we give to this new printblock. There we will
insert a Text Block Category and an attribute CategoryName. The
other printblocks will remain unchanged.

Note that we have two printblocks with fixed contents: Title and
ColumnTitles, and two printblocks with variable contents that will have
to be extracted from the database: Categories and Attractions. Both
contain attributes. Categories has CategoryName, from the CATEGORY
table, and Attractions contains all these attributes, that we had noticed
belonged to the ATTRACTION extended table.

Now we move on to the Source.

Layout



As we have to navigate categories and for each one of them navigate
several attractions (the ones that belong to this category), this listing is
different from that the one we have developed previously.

Source

AttractionId AttractionName CountryId CategoryId …

1 Louvre Museum 2 1

2 The Great Wall 3 3

3 Eiffel Tower 2 2

4 Christ the Redeemer 1 2

5 Smithsonian Institute 4 1

CategoryId CategoryName

1 Museum

2 Monument

3 Famous Landmark

For each

For each

endfor

endfor



BEFORE: 
Simple For Each command

AttractionId AttractionName CountryId CityId …

1 Louvre Museum 2 1

2 The Great Wall 3 1

3 Eiffel Tower 2 1

CountryId CityId CityName

1 1 Rio de Janeiro

1 2 Sao Paulo

2 1 Paris

… … …

CountryId CountryName

1 Brazil

2 France

3 China

Base Table

extended

In the previous list we navigated attractions and since each attraction
has only one country, we could retrieve the name of each attraction's
country, because it was in the extended table of the base table that we
were navigating.



BEFORE: 
Simple For Each command FE Base Table

As long as the information we want to retrieve is available in the
extended table of the base table we're navigating, we can reference it
directly in the For Each command. That was the case of CountryName.



NOW: 
Nested For Each commands External FE

Base table
1N

Nested FE
Base table

On the other hand, if we're navigating a table in our case, Category
and for each accessed record we need to navigate several related
records which are saved in another table that doesn't belong to the
extended table of the table we're navigating or running through, as in
this case, with the ATTRACTION table, we will need to write another For
Each command inside the first one, to run through the group of related
records.

That is to say, we will have a For Each command nested inside the
other.



We return to the Source of our procedure and start to write the first For
Each command to navigate and show categories.

Next to the For Each command we type Category Remember that here
goes the base transaction; that is to say, the name of the transaction level
whose information we want to navigate.

What do we want to do first with each category accessed by the For Each
command? Print it. So, inside the For Each command we type: Print
Categories.

Since the Categories printblock only includes the CategoryName attribute,
and GeneXus has inferred that the base table of the For Each command is
CATEGORY, and CategoryName is included in the extended table of this
base table (because in this example it is in the table itself), everything will be
in the correct order and it will be possible to retrieve the data. Otherwise,
GeneXus would give an error.

After printing the category, we want to navigate its group tourist attractions
therefore, we need to type the second For Each command, to run through

the N attractions of the category we're navigating.

But right before navigating the group of attractions in that category, we will
have to show the titles of the attractions that will be displayed, so we type
the instruction Print ColumTitles.

Designing the Source

BASE TABLE: CATEGORY 

BASE TABLE: ATTRACTION

1N

Are they 

related?

Here, we are positioned in a category (it’s instantiated)



Now we type the second For Each command, inside the body of the first one

Next, we type Attraction because it is the name of the transaction whose associated table
we want to navigate now. Inside the For Each command, we type Print Attractions.

Next, we type Endfor to close this navigation and Endfor again to close the first one.

How did GeneXus know which attractions had to be shown for each category if we didn't
explicitly indicate anything about it?

Let's look at the For Each commands. We know that a For Each command runs through N
records in a table and, for each one of them, runs a series of instructions; those found
inside the For each command. Inside this of the first For Each command, we will
be positioned each time on a single category. We say that the category is instantiated,
every time. It's a certain category. Only when the execution of the instructions in the
body is completed, it moves on to the following category.

Therefore, before starting to execute the nested For Each command, GeneXus already
knows the category in which it is positioned at that moment.

That's why we wrote a For Each command that navigates the attractions, without adding
a where clause to filter those attractions meeting the condition that their category must
match the category we're positioned in within the first For Each command.



How did GeneXus determine that filter without us having to write it?
The answer is in the way For Each commands are written.

If two For Each commands are written one after the other, they are
independent of each other.

On the other hand, we type one For Each command inside another For
Each command because for each record of the first navigation we want
to run through a set of records in the second one.

When we write nested For Each commands, GeneXus determines for
every For Each command the base table that will be navigated and
then looks for relationships between that information.

Implicit filter in nested For Each commands

many

1

Parallel For Each commands Nested For Each commands

Independent 

navigations

Related 

navigations?



In our case, the base table of the external For Each command is
CATEGORY, and the base table of the internal For Each command is
ATTRACTION. GeneXus knows that there's a common attribute between
both tables: This common attribute is CategoryId, which is a primary
key in CATEGORY and foreign key in ATTRACTION.

In this way, the CategoryId attribute relates the tables ATTRACTION and
CATEGORY, as we can see here in the diagram, establishing a 1 to N
relationship. That is to say, for every category there are many related
attractions.

Implicit filter in nested For Each commands

AttractionId AttractionName CountryId CategoryId …

1 Louvre Museum 2 1

2 The Great Wall 3 3

3 Eiffel Tower 2 2

4 Christ the Redeemer 1 2

5 Smithsonian Institute 4 1

CategoryId CategoryName

1 Museum

2 Monument

3 Famous Landmark

Primary Key

Foreign Key



Therefore, for every category navigated in the external For Each
command, GeneXus runs the For Each command that navigates the
attractions table, filtering only those attractions whose CategoryId value
matches the CategoryId value of the category we're positioned in.

It's exactly as if in the internal For Each command we had written Where
CategoryId=CategoryId . but we don't have to type it because
GeneXus detects it and applies it.

Implicit filter in nested For Each commands



If we open the Navigation List of this procedure, we can see that it
provides information about the two For Each commands: the base table
of the external one is Category, and that of the nested one is Attraction.
In addition, we can see that categories are retrieved in the order
specified by their identifier, CategoryId, and that attractions are also
ordered by this attribute, but in this table it is a foreign key. It is the
attribute that relates them, and that's why we see in the navigation
filters that only the attractions in this category will be retrieved.

We have seen how easy it is to obtain information and display it in a
report... but procedures can do much more than that. We will see that
later on.

Navigation List



As a review, let's remember that when we type nested For Each
commands, GeneXus determines, for every one of them, the base table
that it will navigate... and looks for any relationship between these base
tables.

If the answer is Yes, as we've seen in the list shown in this class, it will
apply an automatic filter to the records run through by the nested For
Each command. This case of nested For Each commands where
information is filtered according to a relationship criterion is called Join.

Review

For each BaseTransactionA

…

For each BaseTransactionB

…

endfor

endfor

BASE TABLE: A

BASE TABLE: B

? Yes

No

Automatic filter

No Automatic filter

(print all)

Join

Cartesian 
Product



Join

1

N

Direct 1-N

1

N

Indirect 1-N

Review

Here we can distinguish two cases of 1-N relationships between both
tables.

The first one is direct. Note that the base tables of the external and
nested For Each command are CountryCity and Attraction, respectively,
which are linked by a 1-N relationship.

The second one is indirect. The base tables of the external and nested
For Each command are Country and Attraction, which do not have a
direct 1-N relationship, but they do have an indirect one, through the
CountryCity table. In other words: note that the base table of the first
For Each command (Country) is included in the extended table of the
base table of the nested For Each command (Attraction).



If, on the other hand, the answer to the question about the existence of a
relationship was No, No filter would be applied. All the records of the
nested For Each command for every record of the external For Each
command would be printed. This type of nested For Each commands
where no implicit relationship is found is called Cartesian Product. Of
course, the developer can always add explicit filter conditions by typing
them directly in the For Each command with Where clauses.

In these cases, we assumed that the tables were different. In the following
video, we will see what happens when the tables of the external and
nested For Each commands are the same table.

Review

• Related information

For each BaseTransactionA

…

For each BaseTransactionB

…

endfor

endfor

BASE TABLE: A

BASE TABLE: B

? Yes

No

Automatic filter

No Automatic filter

(print all)

Join

Cartesian 
Product



training.genexus.com
wiki.genexus.com


