
How to list grouped information

Nested For Eachs

In the previous section we saw a list requested by the travel agency that showed
all the tourist attraction Categories. For each category, it showed the list of
attractions that had been entered.

Let's change the category of Great attraction, so that
no longer has an associated attraction.

Now we execute the list again.
As we can see, this list shows ALL the categories that have been entered, even
those that don't have associated attractions.

If this is not what we want, that is to say, if we want to show only the categories
that have attractions. What do we do?

Listing grouped information

• This was the listing of categories with
its attractions.

• The Famous Landmark category does
not have any attractions at the
moment.

•
the categories, but rather only the
ones that have attractions?

We will implement this in another procedure. To do so, we save the one we
had with another name. And change the text title.

If we examine the For Each commands that we had implemented, we can
see that the base table of the external For Each command is Category, and
the base table of the nested For Each command is Attraction.

But in this way, we first access the Category table; next, the record data is
printed and finally the nested For Each command is executed. As a result,
the category will be printed before we know if it has related attractions or
not.

This is not what we need. We need to access the attractions' categories
because it is the only way to make sure that the category to be printed has
at least one attraction.

CategoryId CategoryName

1 Museum

2 Monument

3 Famous Landmark

AttractionId AttractionName CategoryId …

1 Louvre Museum 1

5 Smithsonian Institute 1

2 The Great Wall 2

3 Eiffel Tower 2

4 Christ the Redemmer 2

3?

The idea is to group the attractions in the Attraction table by category, and
then go over those groups, printing the category for each of them, for which
we will have to access the Category table in order to recover its name. In
addition to printing each attraction in the group.

To then move on to the next group and so on.

In sum, what we must do is go over the Attraction table only, first grouping it
by category and printing the category, and then printing, from each
category group (obviously by navigating the same Attractions table) the
attractions in it.

Note that the way in which we instruct GeneXus that the grouping is to be
done by CategoryId is by specifying the Order clause.

This case of nested For eachs that go over the same table is known as
control break.

Solution

AttractionId AttractionName CountryId CategoryId …

1 Louvre Museum 2 1

5 Smithsonian Institute 4 1

2 The Great Wall 3 2

3 Eiffel Tower 2 2

4 Christ the Redemmer 1 2

Foreign Key

CategoryId CategoryName

1 Museum

2 Monument

3 Famous Landmark

Primary Key

Grouping or

Break control

Let us now do the changes in our procedure

First we change the transaction of the external For each, and use
Attraction
Then we add the Order clause, to sort by CategoryId, which in the case of
the control break will also apply to something more significant: for grouping
by that attribute.

We run it. Note that the "Famous Landmark" category, which doesn't have
any attractions, is not being listed.

Listing grouped information: control break

If we consider the resulting navigation list, we will see that it informs us about a
For each to the Attraction table, ordered by CategoryId, which will be broken
(Break) by the nested For each on the same table: Attraction. Note that in this
break only the attractions in the category of that group are run through.

Listing grouped information: control break

Conceptualization

• Break the information by some criteria

For each BaseTransaction1

order Att1, Att2, …, Attn

…

For each BaseTransaction2

…

endfor

…

endfor

BASE TABLE: A

= Grouped
information

Break control

BASE TABLE: A

✓ Same base table for all

So

It relates to nested For eachs eachs

Conceptualization

• Break the information by some criteria

For each BaseTransaction1

order Att1, Att2, …, Attn

…

For each BaseTransaction2

…

endfor

…

endfor

✓ Break criteria:
order clause

BASE TABLE: ABreak criteria

And the Order clause to establish the break criteria.

Another example: Unique clause

List only those categories that have registered tourist attractions. We want to see repeated names.

For each base
Table:

ATTRACTION

Now let's look at another situation.

Suppose we need to list only those categories that have registered tourist
attractions. How can we go about it?

If we look at the transaction design, we clearly see that the categories
related to some tourist attraction are those found in Attraction, as a foreign
key.

The first thing we can think of is a For Each command with Attraction as
the base transaction and then list the name of the Category.

Although this list effectively shows the name of the categories that have
some associated attraction, those names are repeated because, for
example, there are several attractions that are Monuments. Therefore,

as a category name is listed several times.

How can we control that these listed names are not repeated? That is, that
they are shown only once?
Using the Unique clause.

This clause allows you to indicate the attribute, or set of attributes, whose
value should not be repeated in the query output. These attributes must
belong to the extended table of the For Each command.

9

Summary

Summing up

• Listings

✓ Layout
✓ Source

For each
command

1

2

3

In these videos we have seen how GeneXus facilitates the determination of
simple listings (that navigate a single table) or more complex listings that
navigate information in several related tables (join), or in the same table, but
grouped by some particular criterion (control break).

The command that we use in all cases for accessing the database is the For
each.

Summing up

• Listings

✓ Layout
✓ Source

For each

command

1

For each BaseTransaction
order Att1, Att2, …, Attn
where condition1
where condition2
…
where conditionn

MainCode
endfor

1

Simple For each

In the first case, we used a simple For each, where we inferred the table to be
navigated through its Base Transaction.

Summing up

• Listings

✓ Layout
✓ Source

For each

command

For each BaseTransaction
order Att1, Att2, …, Attn
where condition1
where condition2
…
where conditionn

…
For each BaseTransaction

order Att1, Att2, …, Attn
where condition1
where condition2
…
where conditionn

…
endfor
…

endfor

2

1

N

2

JoinNested for eachs

In the second case we have a pair of nested For eachs, where, from different
base transactions we discover a relation of one to many amongst the
information of each For each.

Summing up

• Listings

✓ Layout
✓ Source

For each
command

3

For each BaseTransaction
order Att1, Att2, …, Attn
where condition1
where condition2
…
where conditionn

…
For each BaseTransaction

order Att1, Att2, …, Attn
where condition1
where condition2
…
where conditionn

…
endfor
…

endfor

3

=

Break controlNested For eachs

While in the third case we also have a couple of nested For eachs, but in this
case their base transactions are the same. GeneXus then understands that we
want to or the information from the table that is to be run
through, by the attribute or the group of attributes specified in the Order
clause of the external For each.

• Panels

• Query object

• Listings

✓ Layout
✓ Source

comando
For each

1

2

3

Further ahead we will see other mechanisms to implement queries to the
database for obtaining information in a flexible and appealing manner.

training.genexus.com
wiki.genexus.com

