Web Panels

How to Implement Control Breaks in Nested Grids

GeneXus

Web Panel with SEVERAL Grids

In another video we learned how the base tables and the navigation of a
web panel with several grids were determined.

E=

Attraction 2 Country 2
|
¥ Attractionld 7 Countryld
Loy
AttractionDescripti J. 'y
Countryld
_‘ o ‘ . Categoryld
Events | Londruons | Variables AttractionPhoto -
s { CountryCity
lzparm(in: CountryId); Syld
‘**— ¥ Countryld
? Cityld
| CityName
Category 2
Country Name |CountryName Country Name | &CountryName ¢ Categoryld
CategoryName
Attraction ld | Attraction Name Trips Attraction Id Attraction Name Trips i
Attractionld AttractionName Ol ‘&trips | ‘&updateZ ‘ ‘&neanp &Attractionld ‘ |&Aﬁra(tiunName | O| ‘&tnps ‘ ‘&updaieZ | ‘&neanp
Total Trips | &totalTrips Total Trips | &totalTrips
Total Attractions Total Attractions |&totalAttractions

In particular, we saw an example of nested grids performing a join.

That is, the external grid ran through a table with a 1to N relationship with
the table run through by the internal grid, regardless of whether these
grids were implemented with or without a base table.

In both solutions, the web panel received a country identifier in a
parameter, and the external grid showed the cities of that country; that is
to say, it was going to run through CountryCity; and the internal grid
showed the tourist attractions of that city. In other words, it was going to
run through Attraction.

E=

Event Gridl.Refresh Pseudo-code

Web Form Events ‘ Conditions | Va &totalAttractions = @

. endevent
1= parm{ in: Countryld);

For each Country.City
where Countryld = @Countryld

Event Gridil.Lead

&attractions = Count(AttractionName)
Country Name |CountryName &totalAttractions = &totalAttractions + &attractions
endevent

Load

GRID
City Name

GRID

Event Grid2.Refresh
&totalTrips = @
Endevent

Attraction Id Attraction Name Trips

Attractionld AttractionName O| ‘&tlips ‘ ‘&updaiez ‘ |&newTrip

For each Attraction order AttractionName
where Countryld = @Countryld
where Cityld = @Cityld

Total Trips |&totalTrips

Event Grid2.lLoad
&trips = Count(TripDate)

&totalTrips = &totalTrips + &trips
Total Attractions. Endevent

Load
endfor

In the case of grids with a base table, this join was established

automatically, without having to do anything. GeneXus detected it and
added the filter in its source program.

l=parm(in: CountryIld);

Country Name |&CountryName

GRID

GRID

Attraction Id Attraction Name Trips

|&newTrip

;lo s | fawpot |

Total Trips |&totalTrips

Total Attractions |&totalAttractions

E=

Event Gridl.Refresh Pseudo-code
&totalAttractions = @

endevent

Event Gridl.lLoad
For each Country.City
&CountryName = CountryName
&citylame = CityName
&attractions = Count(AttractionName)
&totalAttractions = &totalAttractions + &attractions
Load
endfor
endevent

Event Grid2.Refresh
&totalTrips = @
Endevent

Event Grid2.load
For each Attraction order AttractionName
where CityName = &cityName
&AttractionTd = AttractionId
&Attractioname = AttractionName
&AttractionPhoto = AttractionPhoto
&trips = Count(TripDate)
&totalTrips = &totalTrips + &trips
Load
endfor
Endevent

endfor

On the other hand, in the case of grids without a base table, we had to
specify it in the For each that we implemented to load the nested grid
(and we only filtered by city, because the filter by country was already
implicit by receiving it in a parameter in the Countryld attribute).

GeneXus Application Name

Country Name T

City Name -

Attraction Name Trips

Total Trips - &

City Name

Attraction Name Trips

Total Trips

Total Attractions 3

Here is the web panel with both grids with a base table. We have added an
action in the countries Work With pattern to invoke this web panel.

If we choose France: here we see the attractions of Paris and Nice, which
are the two cities we have entered in the system.

GeneXus Application Name

Country Name Beak

ity Name Rio de Janeiro

Attraction Name Trips

Total Trips
City Name

Sao Paulo

Attraction Name Trips

Total Trips .

Total Attractions 1

Now, let's see what happens if instead of choosing France we choose
Brazil, for example, which also has two cities entered.

We see that for the first one, Rio de Janeiro, a tourist attraction is shown,
but for the second one, Sao Paulo, no tourist attractions are shown. This is
precisely because it is a join.

lE=parm(in: CountryId);

Grid1.Refresh()

- Gridl » Load— Rio de Janeiro

Grid2.Refresh()

City Name Grid2 = Load Christ the Redemmer

GRID Grid1 > Loadl——— Sao Paulo
Attraction|d | Attraction Name Trips
Attractionld | |Attra(tianName | o | ‘&trips | |&updat52 ‘ ‘&newTrip GridQ,RefreSh()

Control Break instead of Join

The Refresh of the external grid will be executed first, and then, once
positioned in the first city, Rio de Janeiro, it will be loaded in Grid1; right
after that, the Refresh of the nested grid will be executed, and then the
attractions of Rio de Janeiro will be loaded, which in this case is only one,
Christ the Redeemer.

Then the next city, Sao Paulo, will be loaded and the nested grid will be
refreshed. But when running through the table of attractions to load only
those of Sao Paulo, none will be found.

In order to show only cities with attractions, we need to implement a
control break and not a join.

E=

—_— Attraction 2 Country 3 ‘
|
[Rules | Events | conditions | Variables 7 Attractionid 7 Countryid ‘
5 | G
1= parm{ in: CountryId); AttractionDescripti *"7
Countryld
Categoryld
AttractionPhoto =
Cityld CountryCity 2
e 7 Countryld
¥ Cityld
| CityName

S
Category 2
§ Categoryld
CategoryName

[T .
; I+ Attraction
Attraction |d Attraction Name @ Trips update2 new Trip
Attractionld ‘ ‘Aﬁra:tiunName ‘ ‘&lnps ‘ |&updat22 ‘&neanp
STyBEE +— Attraction
o o

We had outlined a case where an unwanted control break would occur
instead of a join. But we had only addressed that by not specifying a base
transaction for the nested grid. It appeared to be CountryCity, but actually
it would be Attraction. We hadn't looked closely at the navigation, and
now we will do so with our example.

Attraction 2 ‘ Country 2 ‘
| | § Attractionld ‘ ¢ Countryld ‘
l=parm(in: Countryld); //:ltlt:i:zrr‘\gl“;pu CountryName
—_———
Countryld
Categoryld
AttractionPhoto
Cityld CountryCity 2
— 7 Countryld
7 Cityld
CityName
Country Nam GRID ? g:gzﬁame
- City Name |&cityName
City Name
- Attractionld__ | Attraction Name Trips For each Attraction order Countryld, Cityld
5 ‘&Aﬁra(tionld H&AﬂranlanName ‘ <) ‘&trips H&updateZ H&newTrip |
Attraction | I:‘ |
Attraction] print CountryName
S print CityName

Total Atractions For each Attraction .
| ool Attt print AttractionName, AttractionPhoto, etc.
endfor
endfor

We need, as in the case of a listing, that both For each commands (either
implicit, i.e. coming from grids with a base table, or explicit, i.e. coming
from grids without a base table) have the same base table, Attraction. And
that the first one makes up the group that is going to make the break by
country/city.

To do so, it is enough to modify the base transaction and add the order to
the first grid.

It will depend on whether grids were implemented with or without a base
table, to see how to do it.

WITH Base Tables

Let's start by the case in which the web panel was implemented with both
grids with a base table.

[Attraction 7 Country B
9 Attractionld 7 Countryld
AttractionName CountryName

AttractionDescripti — &

Grid1 and Grid2 with Base Tables comtd,
AttractionPhoto A3

Cityld CountryCity 2
" ¥ Countryld
CityName

General Class

laparm(in: CountryId);

(2J2] F | Fiter

Free Style Grid: Grid1 & 7 g::zz:fame
Control Name Grid1 ‘
Collection
Country N CountryN,
Save State e For each Attraction order Countryld, Cityld
== |Base Tin Attraction
Giyltariz |Order Countryld, Cityld print CountryName
|Conditions print CityName
GRID Unique
Attraction Id Attraction Name i Inps i | h .
Attractionld | |AttractionName o H&trips |E|&update2 m&newTrip For eaC Attraqtlon .
4 i i i print AttractionName, AttractionPhoto, etc.
endfor
endfor

In this case, the objective is achieved by changing the properties that we
see of the external grid, for these others.

1 ViewCountrylnfo_relatedCopy1 X

Web Layout | Rules

g[Em=DEEm

o

Properties

General Class

(22| 5 | Filter

Country Name |CountryName

o

City Name

Attraction Id

Attraction Name

Attractionld ‘

‘AnractionNama ‘

Trips

&trips

&wupdate2

&newTrip |

Control Name
Collection
Rendering Mode
Save State

Base Trn

Order
Conditions

Unique

o

Total Trips | &totalTrips

Total Attractions |&totalAttractions

Grid1

Responsive
False

Country.City

O Properties

General Class

(={2] | Filter

Control Name
Collection
Base Trn
Order
Conditions
Unique

Data Selector

Grid2

Attraction

AttractionName

(none)

>

Before doing it, let’s go to GeneXus. We see the properties of both grids:
the first one has a Base Trn Country.City, and no order.

The second one has Base Trn Attraction and an order by AttractionName.

1 ViewCountrylnfo_relatedCopy1 X

IIH!IH!H!II R %i‘E f"" Conditions

[]

Country Name |CountryName

o

B

City Name

Attraction Id | Attraction Name

Attractionld ‘ ‘AnractionNama ‘ O|

Trips

‘anﬂps |

‘&updatez ‘

‘&n ewTrip

o

Total Trips | &totalTrips

Total Attractions |&totalAttractions

Event Gridl.Refresh
&totalAttractions = @
endevent

Event Grid2.Refresh
&totalTrips = @
Endevent

Event Gridl.Load
&attractions = Count(AttractionName)
&totalAttractions = &totalAttractions + &attractiong
Endevent

Event Grid2.Load
&trips = Count(TripDate)
&totalTrips = &totalTrips + &trips
Endevent

Event &update2.Click
Attraction(trnMode.Update, AttractionId)
Endevent

Event &newTrip.Click
&trips = NewTrip(AttractionId)
Refresh

endevent

Event AttractionName.Click
ViewAttractionFromScratch(AttractionId)
Endevent

And in the events we see that the Refresh and Load events have been
programmed for each grid, only to initialize and sum or count in variables
(which will show the total number of attractions loaded and the total
number of trips in which those attractions are included).

We also have user events to call various objects. They don't matter at all
here.

spc0038 There is no index for order AttractionName; poer performance may be noticed in grid ‘Grid2".

Event Grid1.Load

Countryld
Inde

INTRYGITY
Countryld = @Countryld
Countryld = @Countryld

m

vent Grid2 Load

@:Cmmtrygty (Countryld, Cityld) INTO Cityld CityName Grid1 Atractionit
~Country (Countryld) INTO CountryName racionbiame
BB- count(AttractionName) navigation (Countryld. Cityid) Start from FirstRecord
Loop while: _NotEndOfTable
Countryld = @Countryld
Formulas Cityld = @citid
Server

count(AttractionName)

iven =count(TripDate) navigation (Attractionld)
Index ICOUN
Group by: Countryld
Formulas
g:At\racl\cn count(TripDate)
Given Attractionld
Inde: IATTRACTION
Group by: Attractionld

In GeneXus, let’s look at the navigation list of the web panel.

We can clearly see the base table of the first grid: CountryCity, which will
filter by the country received in a parameter. Next, we go to the nested
Load, which has Attraction as a base table, and filters by the country and
city of the external grid.

Of course, we see the join

Also, note that it orders the first implicit For each by Countryld, and the
second one by AttractionName, for which it reports that there is no index.

Event Gridl.Refresh
&totalAttractions = @
endevent

b Form Events | Conditions

s | variables For each Country.City

1 parm(in: CountryTd); where Countryld = @Countryld
Event Gridl.lLoad
&attractions = Count(AttractionName)
Country Name &totalAttractions = &totalAttractions + &attractions
endevent
GRID Load
City Name Event Grid2.Refresh
&totalTrips = @
Endevent
Attraction Id Attraction Name Trips > . .
- . . - For each Attraction order AttractionName
o [| upe | e
where Countryld = @Countryld
where Cityld = @Cityld
Total Trips Event Grid2.Load
&trips = Count(TripDate)
&totalTrips = &totalTrips + &trips
Total Attractions Endevent
Load
endfor

Grid1 and Grid2 with Base Tables endfor

The pseudocode of the source that GeneXus will program will be similar
to the one displayed. In it, the Base Transaction property of Grid1 was
used to program the base Transaction of the implicit For each.

In the second For each, the order clause set was the content of the grid's

Order property, which was AttractionName, and that is why we saw those
selected indexes.

In short, the Refresh of the external grid will be triggered and then the

implicit For each that we are seeing, which together with the internal one
will make up a join.

Event Gridl.Refresh
‘ &totalAttractions = @
endevent

1= parm{ in: CountryId);

For each Attraction ordeCountryld, Cityld
where Countryld = @Countryld
o X
G Event Gridil.Lead
eeeee | Class . .
— i &attractions = Count(AttractionName)
Sy s zl F | Fiter X &totalAttractions = &totalAttractions + &attractions
~ endevent
GRID Control Name Grid1 Load
City Name Collection Event Grid2.Refresh
RenderingMode ~ Responsive &totallrips = @
Endevent
- Save State False
Attraction Id Attraction Name F h Att " der Att tionN
— i or eacl raction oraer ractionName
I:: Order Countryld, Cityld where Countryld = @Countryld
Conditions where Cityld = @Cityld
Uni .
Total Trips |&totalTrips niave Event Grid2.Load
&trips = Count(TripDate)
&totalTrips = &totalTrips + &trips
Total Attractions Endevent
Load
endfor
Crid] and Crid2 with Base endfor

Now, let's modify the properties of Grid1, the external one.

In doing so, the Base Transaction property of the grid will cause the Base
Transaction of the implicit For each to be modified. And the Order
property will become the order clause of that For each.

This will be enough, because the Refresh of the external grid will be
triggered and then the implicit For each that we are seeing, which
together with the internal one will make up a control break. Therefore,
tourist attractions are going to be grouped by cities of the country (the
filter by Countryld is due to the parameter).

Therefore, for each group of tourist attractions formed by each city, the
Load event will be triggered once. Then the first line will be loaded in the
grid, with the CityName of the city of the first group of attractions (and of
course, its CountryName, which will be the same for all of them).

Next, the Refresh event of the nested grid will be triggered, after which
the implicit for each will be executed, and it will only run through the
attractions of the group, i.e., those of that country and city. For each one
of these attractions in the group it will trigger the Load event and the Load
command to load it into the nested grid.

And so on with all the groups.

Description: View Country Info_related Copy1 Copy1 Spec. Version:

Form Class
Program Name
Parameters

Web Panel ViewCountrylnfo_relatedCopy1Copy1 Navigation Report 2
Name [ViewCountrylnfo_relatedCopy1Copy1 Environment: [c#|Defautt (C#)

JA17_0_3-148529
HTML
ViewCountrylnfo_relatedCopy1Copy1
in: Countryld

Warnings

Grid2".

Spc0038 There is no index for order Countryld, Cityld, AttractionName; poor performance may be noticed in grid

Gridl and Grid2 with Base

E=

Event Grid1 Load

Event Grid2 Load

rder Coul

ld

Cityld , AttractionName

Navigation filters: Start from Countryld = @Countryld
Loop while Countryld = @Countryld
Server

PR Attraction (Attractionld) INTO Gityld AttractionPhoto AttractionPhotc
=Country, (Countryld) INTO CountryName
~CountryCity (Countryld, Cifyld) INTO CityName
=count(AttractionName) navigation (Attractionid. Countryid,

Cityld , AttractionName

while: | Countryld = @Countryld and Cityld = @Cityld

Server

%:Altracﬂcn (Attractionld) INTO AttractionPhoto AtiractionPhoto Uri AttractionName Attractionld

i=count(TripDate) navigation (Attractionid)

Formulas

Formulas

Navigation to evaluate: count(AttractionName)

Given: Atiractionld Gountryld Cityld

Index

IATTRACTION

Navigation to evaluate: count(TripDate)

Given Attractionld
Index IATTRACTION
Group by Attractionld

Group by: Attractionld Countryld Cityld ﬁ:mpmuagmn

=Trip (Trpld)

Ff-Attraction (Attactionld. Countryld Cityld)

If we look at the navigation list, we can clearly see that both grids will
navigate the same table, Attraction, using an index made up of the
attributes of the Order property of the first grid, plus the order of the
nested grid.

And we can clearly see that for the nested grid only the attractions
corresponding to the country and city of the first grid will be run through.

Country Name Chine

City Nome

Attraction Name

Total Trips

Total Attractions 1

Country Name

Total Attractions

City Name -

Attraction Name

Total Trips "
City Name

Nice

Attraction Name

Total Trips N

If now we try it at runtime... we see exactly what we wanted.

Take China, for example. Perfect.

And if we go to France... in this case we don't notice any differences with

the case of a join.

But the attractions are not being counted correctly. Why?

Conditions | Variables

1= parm(in: CountryId);

Event Gridl.Refresh
&totalAttractions = @
endevent

Country Name |CountryName

GRID

City Name

GRID

Attraction Id Attraction Name Trips

Attractionld AttractionName O| ‘&tlips ‘ ‘&updaiez ‘ |&newTrip

Total Trips |&totalTrips

Total Attractions |&totalAttractions

Grid1 and Grid2 with Base Tables

For each Attraction order Countryld, Cityld
where Countryld = @Countryld

Event Gridl.Leoad
&attractions = Count(AttractionName)

&totalAttractions = &totalAttractions + &attractions
endevent

Load
Event Grid2.Refresh

&totalTrips = @
Endevent

For each Attraction order AttractionName
where Countryld = @Countryld
where Cityld = @Cityld
Event Grid2.Load
&trips = Count(TripDate)

&totalTrips = &totalTrips + &trips
Endevent

Load
endfor

endfor

In Grid1 we are using the Count formula to count the attractions

corresponding to that country and city. This worked when the base table
of the For each was CountryCity, but not now that it is Attraction.

Parameters:

Web Panel ViewCountryInfo_relatedCopy1Copy1 Navigation Report *
Name [ViewCountrylnfo_relatedGopy1Copy1 Environment (c#)
Deseription: View Country Info_related Copy1 Copy1 Spec. Version: ¥ 17_0_3-148529
Form Class: HTML

Program Name:

ViewCountryInfo_relatedCopy1Copy 1
in: Countryld

‘Warnings

A\ spc0038 There is no index for order Countryld, Cityld, AttractionName; poor performance may be noticed in grid
‘Grid2'.

id1 and Grid2 with Base Tables

Event Grid1.Load

Event Grid2 Load

Order Countryld , Cityld , AttractionName
ndex!

Navigation filters: ~Start from: Countryld = @Countryld

Loop while: Countryld = @Countryld

Join location: Server

@:Aﬂrac\mn (Attractionid) INTO Cityld AttractionPhoto AttractionPhot
ountry. (Countryld) INTO CountryName
E- CountryCity (Countrylg. Ciyid) INTO GiyName
- count(AtractionNzme) navigation (Attractionld, Countryld

Formulas

Navigation to evaluate: count{ AttractionName

Given
Index: N

@: ttraction (Attractionld, Countryld. Cityld)

Grid1

Order Countryld , Cityld, AttractionName

o index
Navigation filters: Loop while: Countryld = @Countryld and Cityld = @Cityld

Server

= fion ()} INTO

tractionPhoto AttractionPhote.Uri AftractionName Attractionld
@waum(ripDate) navigation (Atfractionid)

Formulas

Navigation to evaluate: count(TripDate)

Given: Aftractionld
Index IATTRACTION
Group by: Attractionld

@:Epmtracu on
ip (Tripld)

The problem with the formula of the first grid is clear in the navigation list.

We can't run through a table and make an aggregation on the same table.

E=

Web Panel ViewCountryInfo_relatedCopy1Copy1 Navigation Report 2 General Class
Ql $ ‘ Filter
Name ViewCountryInfo_relatedGopy1Gopy1 Envil t #
) nironmen) Free Style Grid: Grid1 2
Description: View Country Info_related Copy1 Copy1 Spec. Version: ¥17_0_3.148529
Form Class: HTML Contral Name bakiak
Program Name: ViewCountrylnfo_relatedCopy1Copy1 Collection
Parameters in- Countryld
Rendering Mode Responsive
Warnings a Save State False
Base Trn Attraction
A\ 5pc0038 There is no index for order Countryld, Cityld, AttractionName; poor performance may be noticed in grid
"Grid2'. Order Countryld, Cityld
Event Grid2 Load Conditions 2
Event Grid1.Load
Dige [—m—
Countryld , Cityld , AttractionName Countryld , Cityld , AttractionName
No index No index!
Start from: Countryld = @Countryld Loop while Countryld = @Countryld and Cityld = @Cityld
Loop while: Countryld = @Countryld Server
Server
@7 =Attraction (Aftraction/d) INTO AttractionPhoto AtiractionPhoto.Uri AttractionName Attractionld
=Aftraction (Aftractionld) INTO Cityld AttractienPhoto AttractionPhot @7:cum(muDa\e) navigation (Aftractionid)
=Country. (Countryld) INTO CountryName
ountryCity (Countiyld, Cityid) INTO CityName T—— N

P count(AttractionName) navigation (Attractiontd, Countryid

Navigation to evaluate: count(TripDate)
Formulas

Given Attractionld
Navigation to evaluate: count(AttractionName) Index: IATTRACTION
Group by: Attractionld
Given: Attractionld Gountryld Gityld
Index: IATTRACTION

Group by- Attractionid Countryld Cityld

@:Mpmtract\ on
ip (Trpld)

@:A(tramon(ﬁ\mactmmd Countryld. Cityld)

error spc@21l: Unique clause in break group not supported in grid 'Gridl'. (Web Panel *VieuCountryInfo_rel:
Failed: Specification

For this to work we would have to use the unique clause, which in this
case is not useful, because it is not supported for control breaks (we're
talking about the control break between grid 1 and grid 2).

Event Gridl.Refresh
&totalAttractions = @
endevent

For each Attraction order Countryld, Cityld

@ iETe where Countryld = @Countryld

Event Gridl.load

&attractions = @
for each Attraction
City Name &attractions = &attractions + 1
endfor
&totalAttractions = &totalAttractions + &attractions
] endevent
Attraction Id | Attraction Name Trips
o | [atries | [supdater | [anewtrio | Load
Event Grid2.Refresh
i &totalTrips = @
Endevent
Total Trips
For each Attraction order AttractionName
where Countryld = @Countryld
Total Attractions

where Cityld = @Cityld

Event Grid2.load

&trips = Count(TripDate)
. " - &totalTrips = &totalTrips + &trips
Grid1 and Grid2 with Base Tables Endevent

Load
endfor

endfor

Therefore, we could make this calculation with another For each, by
implementing another control break nested to the outermost For each.

But this is not what we need. We would have one control break split in two
instances, but the first one would run through all the attractions of the
city, and the second one would have no attractions to run through.

Event Gridl.Refresh
&totalAttractions = @
endevent

For each Attraction order Countryld, Cityld

Country Name where Countryld = @Countryld

Load
City Name Event Grid2.Refresh
&totalTrips = @
Endevent

Attraction Id Afttraction Name Trips

For each Attraction order AttractionName
| ;lo Jars | [aupastez | [aneni |

where Countryld = @Countryld
where Cityld = @Cityld

Total Trips | &totalTrips

Event Grid2.load
&trips = Count(TripDate)

&totalTrips = &totalTrips + &trips
Total Attractions _t >

&totalAttractions = &totalAttractions + 1
Endevent

Grid1 and Grid2 with Base Tables endfor

endfor

Load

We have a much simpler solution: since the number of attractions will be
the sum of all the records loaded in Grid 2, we could have deleted the
Load event from Grid 1, and added the sum to the Load of Grid 2, without
reinitializing the variable other than in the Refresh...

This makes it much simpler.

Country Name 7
Brazil
Country Name Erance
City Name S <
i Rio de Janeiro
City Name Paris
" Attraction Name
Attraction Name
hrist the Redemmer
Total Trips 0
m
Total Trips Total Attractions A Beijing
City Name Nice
rbic
Attraction Name
Em|
isse Museurr
Total Trips 0
Total Trips
Total Attractions 3
Total Attractions =

Se observamos a lista de navegacao, vemos claramente que ambos os
grids navegardao a mesma tabela, Attraction, utilizando um indice
composto pelos atributos da propriedade Order do primeiro grid, mais a
order do grid aninhado.

E vemos claramente que para o grid aninhado, apenas serdo percorridas
as atracdes que correspondem ao pais e cidade do primeiro grid.

WITHOUT Base Tables

Now let's move on to the implementation case without a base table.

. Events | Conditions | Variables Event Gridl.Refresh
&totalAttractions = @
laparm(in: CountryId); endevent
Event Gridl.Load
For each Country.City
&CountryName = CountryMame

Country Name &cityMame = CityName
Load

- endfor

o endevent

Event Grid2.Refresh
- . &totalTrips = @
Attraction Id | Attraction Name Trips | Endevent

aAttractionld | [&AttractionName | o | [earips | [mupdate2 | [anewrip
3 Event Grid2.Load

For each Attraction order AttractionName

. where CityName = &cityName
- &AttractionId = AttractionId
Total Tr &totalTr
et s 8Attractionlame = AttractionName
&AttractionPhoto = AttractionPhoto

. " &trips = Count(TripDate)
Total Attractions |&totalAttractions

&totalTrips = &totalTrips + &trips
&totalAttractions = &totalAttractions + 1
Load

endfor
Grid1 and Grid2 without Base Tables Endevent

We had this web panel that implemented the same join as in the
beginning, but without base tables. Note that in the screen we only have
variables and there are no attributes in the properties of any of the grids.

In the events, we explicitly performed the database loading. Let's do a
Save As to leave this one as it was, with a join. And implement the control
break in another. We take this opportunity to remove the Count of
attractions from the first Load, and count in the second one, to make
everything simpler.

Now let's modify the Work With Country action to invoke this web panel.

Country Name

France
City Name Paris
Attraction Name
Eiffel Tower
Louvre Museum
Total Trips
City Name Nice

Attraction Name

Matisse Museur

Total Trips

Total Attractions

Country Name

Total Attractions

China

City Name

Attraction Name

Forbidden city

Total Trips

City Name

Attraction Name

Total Trips

Beijing

Hong Kong

Let's run... and see the attractions of France. And now those of China. The
join is clearly noticeable and not the control break.

E ‘ ‘ I Event Gridl.Refresh
: S o &totalAttractions = @

1= parm(in: Countryld); endevent

Event Gridl.Load
For each Country.City

Country Name |&CountryName &Countrylame = CountryName

&cityName = CityName Control
== toad Break?
. endfor
I N
Attraction Id | Attraction Name Trips Event Grid2.Refresh

;Io e | ewpasz | [anenton | _ sotalTrips = o
H naeven

Event Grid2.Load

For each Attraction order AttractionMame

Total Trips | &totalTrips where CityMame = &cityName

&AttractionId = AttractionId

&Attractionleme = AttractionMame

Total Attractions &AttractionPhoto = AttractionPhoto
&trips = Count(TripDate)

&totalTrips = &totalTrips + &trips
&totalAttractions = &totalAttractions + 1

Grid1 and Grid2 without Base Tables enttor

Endevent

Even though the Load command of the first grid triggers the Refresh
event, and immediately after that the Load of the second grid, it doesn’t
really nest the For each commands. It's as if a subroutine were invoked, as
if the For each of the nested grid were executed in isolation.

That’s why GeneXus is not finding an automatic join, and we had to
explicitly filter the attractions of the city that was loaded in the &cityName
variable, which was loaded by the Load event that invoked the Load of the
nested grid. We didn't have to also place a filter by Countryld because it is
instantiated in the parameter.

Let's keep this in mind, because it will make this case less obvious than it
might seem at first.

The question is: How do we make the For each corresponding to grid1
change its base table to Attraction and establish a control break by
country, city?

Event Gridl.Refresh
Form Events ‘ Cart -‘c“:‘ vanab E;l [©] Propwies 2 x &totalAttractions = @
1@parm(in: CountryId); Genersl Ciass endevent
jz F | Fitter X
~ Event Gridl.load
For each Attraction order CountryId, CityId

Contrel Name Grid1
Country Name |&CountryName &CountryName = CountryName

Collecti . .
oletion &cityName = CityName

Rendering Mode Respansive

GRID Load
Save State False endfﬂ r
City Name Base T endevent
Order
Conditions

Event Grid2.Refresh
&totalTrips = @
Endevent

Attraction Id Attraction Name
Event Grid2.lLoad

&Attractionld_| |@AttractionName | ° I
For each Attraction order AttractionName

Total Trips | &totalTrips where CityName = &cityName

&AttractionId = AttractionId

&AttractionName = AttractionName

Total Attractions &AttractionPhoto = AttractionPhoto
&trips = Count(TripDate)

&totalTrips = &totalTrips + &trips
&totalAttractions = &totalAttractions + 1

Grid1 and Grid2 without Base Tables endtor

Endevent

It won't be by adding Base Trn or Order to the properties of Grid1
(because if we did that, we would transform the implementation into one
with a base table), but to the explicit For each of the Load event of Grid1.

Therefore, it seems obvious that the first thing to do is to modify the first
For each so that the Base Transaction is Attraction...

And it would also seem obvious that we should place an order clause to
establish the grouping criteria by which we want the control break to be
established in relation to the For each of Grid2.

Web Panel ViewCountryInfo_relatedCopy2Copy1 Navigation Report

This is not a Control Break!

However, if we look at the navigation list...

It seems a bit odd, and although every For each apparently does what it
should do, it didn't choose the same order for each one, in order to use a
single index and make the run through more efficient. Something is not
right.

It obviously didn't understand that it will have to make a control break.

GeneXus Application Name

Country Name

France
City Name e
Attraction Name Trips
_—
o v
Total Trips o
City Name Paris
Attraction Name Trips
T
0 UP
[I
Total Trips B
City Name Nice
Attraction Name Trips

And we can confirm this by running it.

Note that for the attractions in France, Paris comes up twice,
corresponding to the two Paris attractions that are available.

City Name Beijing
Attraction Name
Country Name Brazil
Total Trips . .
ity Name Rio de Janeiro
City Name Beijing
Attraction Name
Attraction Name
Christ the Redemmer
Total Trips 0
Total Attractions 1
Total Trips .
City Name Beijing

Attraction Name

For those in China, Beijing comes up three times, corresponding to the
three Beijing attractions.

And for Brazil only once, matching the Rio attractions registered.

What’s going on?

Event Gridl.Refresh
&totalAttractions = @
endevent

Event Gridl.Load
each Attraction order CountryId, CityId
&CountryName = CountryName

ityMame = CityName

Attraction navigated once!

&trips = Count(TripDate
&totalTrips = &totalTrips
&totalAttractions = &totalAt
Load

endfor

Endevent

actions + 1

endfor
endevent

Obviously, it doesn’t realize that it has to make a control break.

This is because, as we have already mentioned, it doesn't really nest the
navigations.

Event Gridl.Refresh
&totalAttractions = @
endevent

Event Gridl.Load
For each Attraction order CountryId, CityId
&Countrylame = CountryName
&cityMame = CityName
Load

endfor
endevent

Event Grid2.Refresh
&totalTrips = @
Endevent

Event Grid2.Load
For each Attraction order AttractionName
where CityName = &cityName
&AttractionId = AttractionId
&AttractionName = AttractionName
&AttractionPhoto = AttractionPhoto
&trips = Count(TripDate)
&totalTrips = &totalTrips + &trips
&totalAttractions = &totalAttractions + 1
Load
endfor
Endevent

It's as if they were two independent For each commands, only that from

one the execution of the other is invoked, but through two separate

queries to the database.

Country Name | &CountryName

Grid1 and Grid2 without Base Tables

City Name ‘
Attraction Id Attraction Name Trips Control Break COU|d ﬂOt be
o] [aos | [aupaez | anewip | A
implemented between nested
grids
Total Trips.

Total Attractions |&totalAttractions

This is the equivalent to saying that we cannot really implement a control
break between two nested grids without base tables.

Event Gridl.Refresh
&totalAttractions = @
endevent

Event Gridl.Lload
Country Name |&CountryName

For each Attraction order Countryld, CityId
unique CountryName, CityName
&CountryName = CountryName

City Name &cityName = CityName

Load
GRID endfor
Attraction ld | Attraction Name Trips endevent
o ‘&trips | ‘&updateZ ‘ ‘&neanp R
| Event Grid2.Refresh
3 &totalTrips = @
Endevent

Total Trips | &totalTrips Event Grid2.Load

For each Attraction order Attractionlame
where CityName = &cityName
Total Attractions &AttractionTd = AttractionId
A a onllame = AttractionName
onPhoto = AttractionPhoto
Count(TripDate)
ps = &totalTrips + &trips
actions = &totalAttractions + 1

Endevent

The solution we have for the moment is to use, for the first For each, the
unique clause. In other words, if several records in the Attraction table
have the same country and city, it will keep only one of them. And for this
one, load the variables and execute the Refresh event, and right after that
the Load of grid2, which will execute its For each as if it were completely
independent of the previous one. And that is precisely why this time it will
allow us to use the unique clause.

) spc0038 There is no index for order AttractionName; poor performance may be noticed in group -
starting at line 27.

Event Grid1 Load &
For Each Attraction (Line: 14) a
Order: Countryld , Cityld

Index: IATTRACTION1
CountryName , CityName
ation Start from Countryld
filters: Loop while: Countryld
Join location: Server

@:A\tramcn (Attractionld) INTO Cityld
=Country, (Countryld) INTO CountryName
@\Cnumrygty, (Countryld, Cityld) INTO CityName

Event Grid2.Load &
For Each Attraction (Line: 27) 2
Order AttractionName

No inde
Start from FirstRecord 1
s Loop while: NotEndOfTable
Constraints Countryld = @Countryld
CityName cityName

Join location: Server

ﬁ:Anractmn (Attractionid) INTO Cityld Countryld AttractionPhoto. Uri
AttractionPhoto AttractionName Attractionld

~CountryCity (Countryld Cityld) INTO CityName
@:coum(_@pDate) navigation (Attractionld)

If now we look at the navigation list... it seems that it will work this way.

Country Name m—

China
Country Name France
City Name Beijing
City Name Nice
Attraction Name
Forbidden city
Attraction Name
Meet the Emperor
Total Trips 0
The Great Wall
City Name o =
] Paris Total Trips 5
Attraction Name Total Attractions 3
Eiffel T Rio de Janeiro
Attraction Name
Total Trips °
Total Attractions 3 Total Trips 0
Total Attractions 1

We run it...

We have succeeded.

WITH or WITHOUT Base Tables?

Grid1 and Grid2 with Base Tables

Free Style Grid: Grid1

Control Name Grid1
Collection

Rendering Mode Responsive

Save State False

Base Trn Attraction

Order Countryld, Cityld
Conditions

Unique

Event Gridl.Refresh
&totalAttractions = @
endevent

Event Grid2.Refresh
&totalTrips = @
Endevent

Event Grid2.Load
&trips = Count(TripDate)
&totalTrips = &totalTrips + &trips
&totalAttractions = &totalAttractions + 1
Endevent

Grid1 and Grid2 without Base Tables

Event Gridl.Refresh
&totalAttractions = @
endevent

Event Gridl.Load

For each Attraction order CountryId, CityId L _
unique CountryMame, CityName
&CountryName = CountryName
&cityName = CityName
Load

endfor

endevent

Event Grid2.Refresh
&totalTrips = @
Endevent

Event Grid2.Load

For each Attraction order AttractionName

where CityMame = &cityName
&AttractionId = AttractionId
&AttractionNeme = AttractionName
&AttractionPhoto = AttractionPhoto
&trips = Count(TripDate)
&totalTrips = &totalTrips + &trips
&totalAttractions = &totalAttractions + 1

Load
endfor
Endevent

E=

So, for the moment, we are finding it much easier to implement a control

break when grids have a base table.

Strictly speaking, it will be a true control break only in that case.

In the second case, when grids don't have a base table, we are just
simulating it. Actually, there will be two independent queries to the
Attraction table and not a single one that solves everything, as it happens

in the real control break.

We encourage you to try everything we have seen.

GeneXus’

training.genexus.com
wiki.genexus.com

