
Web Panels

How to Implement Control Breaks in Nested Grids



Web Panel with SEVERAL Grids

In another video we learned how the base tables and the navigation of a 
web panel with several grids were determined. 



In particular, we saw an example of nested grids performing a join. 

That is, the external grid ran through a table with a 1 to N relationship with 
the table run through by the internal grid, regardless of whether these 
grids were implemented with or without a base table. 

In both solutions, the web panel received a country identifier in a 
parameter, and the external grid showed the cities of that country; that is 
to say, it was going to run through CountryCity; and the internal grid 
showed the tourist attractions of that city. In other words, it was going to 
run through Attraction. 



For each Country.City

where CountryId = @CountryId

For each Attraction order AttractionName

where CountryId = @CountryId

where CityId = @CityId

Load

Load

endfor

endforGrid1 and Grid2 with Base Tables

Pseudo-code

In the case of grids with a base table, this join was established 
automatically, without having to do anything. GeneXus detected it and 
added the filter in its source program.



For each Attraction order AttractionName

where CountryId = @CountryId

where CityId = @CityId

Load

Load

endfor

Grid1 and Grid2 without Base Tables

Pseudo-code

On the other hand, in the case of grids without a base table, we had to 
specify it in the For each that we implemented to load the nested grid 
(and we only filtered by city, because the filter by country was already 
implicit by receiving it in a parameter in the CountryId attribute).



Here is the web panel with both grids with a base table. We have added an 
action in the countries Work With pattern to invoke this web panel.

If we choose France: here we see the attractions of Paris and Nice, which 
are the two cities we have entered in the system.



Now, let's see what happens if instead of choosing France we choose 
Brazil, for example, which also has two cities entered.

We see that for the first one, Rio de Janeiro, a tourist attraction is shown, 
but for the second one, Sao Paulo, no tourist attractions are shown. This is 
precisely because it is a join. 



Grid1.Refresh()

Grid1 → Load

Grid2.Refresh()

Grid2 → Load

Grid2.Refresh()

Grid1 → Load()

Rio de Janeiro

Sao Paulo

Christ the Redemmer

Control Break instead of Join

The Refresh of the external grid will be executed first, and then, once 
positioned in the first city, Rio de Janeiro, it will be loaded in Grid1; right 
after that, the Refresh of the nested grid will be executed, and then the 
attractions of Rio de Janeiro will be loaded, which in this case is only one, 
Christ the Redeemer. 

Then the next city, Sao Paulo, will be loaded and the nested grid will be 
refreshed. But when running through the table of attractions to load only 
those of Sao Paulo, none will be found. 

In order to show only cities with attractions, we need to implement a 
control break and not a join. 



Attraction

?Attraction

We had outlined a case where an unwanted control break would occur 
instead of a join. But we had only addressed that by not specifying a base 
transaction for the nested grid. It appeared to be CountryCity, but actually 
it would be Attraction. We hadn't looked closely at the navigation, and 
now we will do so with our example. 



For each Attraction order CountryId, CityId

print CountryName
print CityName

For each Attraction
print AttractionName, AttractionPhoto, etc.

endfor

endfor

We need, as in the case of a listing, that both For each commands (either 
implicit, i.e. coming from grids with a base table, or explicit, i.e. coming 
from grids without a base table) have the same base table, Attraction. And 
that the first one makes up the group that is going to make the break by 
country/city. 

To do so, it is enough to modify the base transaction and add the order to 
the first grid. 

It will depend on whether grids were implemented with or without a base 
table, to see how to do it.



WITH Base Tables

Let's start by the case in which the web panel was implemented with both 
grids with a base table.



For each Attraction order CountryId, CityId

print CountryName
print CityName

For each Attraction
print AttractionName, AttractionPhoto, etc.

endfor

endfor

Grid1 and Grid2 with Base Tables

In this case, the objective is achieved by changing the properties that we 
see of the external grid, for these others.



GeneXus. We see the properties of both grids: 
the first one has a Base Trn Country.City, and no order.

The second one has Base Trn Attraction and an order by AttractionName. 



And in the events we see that the Refresh and Load events have been 
programmed for each grid, only to initialize and sum or count in variables 
(which will show the total number of attractions loaded and the total 
number of trips in which those attractions are included). 

We also have user events to call various objects. They don't matter at all 
here.



In GeneXus

We can clearly see the base table of the first grid: CountryCity, which will 
filter by the country received in a parameter. Next, we go to the nested 
Load, which has Attraction as a base table, and filters by the country and 
city of the external grid. 

Of course, we see the join 

Also, note that it orders the first implicit For each by CountryId, and the 
second one by AttractionName, for which it reports that there is no index. 



For each Country.City

where CountryId = @CountryId

For each Attraction order AttractionName

where CountryId = @CountryId

where CityId = @CityId

Load

Load

endfor

endforGrid1 and Grid2 with Base Tables

The pseudocode of the source that GeneXus will program will be similar 
to the one displayed. In it, the Base Transaction property of Grid1 was 
used to program the base Transaction of the implicit For each.

In the second For each, the order clause set was the content of the grid's 
Order property, which was AttractionName, and that is why we saw those 
selected indexes.

In short, the Refresh of the external grid will be triggered and then the 
implicit For each that we are seeing, which together with the internal one 
will make up a join. 



For each Country.City

where CountryId = @CountryId

For each Attraction order CountryId, CityId

where CountryId = @CountryId

For each Attraction order AttractionName

where CountryId = @CountryId

where CityId = @CityId

Load

Load

endfor

endforGrid1 and Grid2 with Base Tables

Now, let's modify the properties of Grid1, the external one. 

In doing so, the Base Transaction property of the grid will cause the Base 
Transaction of the implicit For each to be modified. And the Order 
property will become the order clause of that For each. 

This will be enough, because the Refresh of the external grid will be 
triggered and then the implicit For each that we are seeing, which 
together with the internal one will make up a control break. Therefore, 
tourist attractions are going to be grouped by cities of the country (the 
filter by CountryId is due to the parameter). 

Therefore, for each group of tourist attractions formed by each city, the 
Load event will be triggered once. Then the first line will be loaded in the 
grid, with the CityName of the city of the first group of attractions (and of 
course, its CountryName, which will be the same for all of them). 

Next, the Refresh event of the nested grid will be triggered, after which 
the implicit for each will be executed, and it will only run through the 
attractions of the group, i.e., those of that country and city. For each one 
of these attractions in the group it will trigger the Load event and the Load 
command to load it into the nested grid. 



And so on with all the groups. 



Grid1 and Grid2 with Base Tables

If we look at the navigation list, we can clearly see that both grids will 
navigate the same table, Attraction, using an index made up of the 
attributes of the Order property of the first grid, plus the order of the 
nested grid. 

And we can clearly see that for the nested grid only the attractions 
corresponding to the country and city of the first grid will be run through.



If now we try it at runtime... we see exactly what we wanted. 

Take China, for example. Perfect.

And if we go to France... in this case we don't notice any differences with 
the case of a join. 

But the attractions are not being counted correctly. Why?



For each Attraction order CountryId, CityId

where CountryId = @CountryId

For each Attraction order AttractionName

where CountryId = @CountryId

where CityId = @CityId

Load

Load

endfor

endforGrid1 and Grid2 with Base Tables

In Grid1 we are using the Count formula to count the attractions 
corresponding to that country and city. This worked when the base table 
of the For each was CountryCity, but not now that it is Attraction. 



Grid1 and Grid2 with Base Tables

The problem with the formula of the first grid is clear in the navigation list. 

We can't run through a table and make an aggregation on the same table. 



Grid1 and Grid2 with Base Tables

For this to work we would have to use the unique clause, which in this 

talking about the control break between grid 1 and grid 2).



For each Attraction order CountryId, CityId

where CountryId = @CountryId

For each Attraction order AttractionName

where CountryId = @CountryId

where CityId = @CityId

Load

Load

endfor

endfor

Grid1 and Grid2 with Base Tables

Therefore, we could make this calculation with another For each, by 
implementing another control break nested to the outermost For each.

But this is not what we need. We would have one control break split in two 
instances, but the first one would run through all the attractions of the 
city, and the second one would have no attractions to run through. 



For each Attraction order CountryId, CityId

where CountryId = @CountryId

For each Attraction order AttractionName

where CountryId = @CountryId

where CityId = @CityId

Load

Load

endfor

endfor

Grid1 and Grid2 with Base Tables

We have a much simpler solution: since the number of attractions will be 
the sum of all the records loaded in Grid 2, we could have deleted the 
Load event from Grid 1, and added the sum to the Load of Grid 2, without 
reinitializing the variable other than in the Refresh...

This makes it much simpler. 



Se observamos a lista de navegação, vemos claramente que ambos os 
grids navegarão a mesma tabela, Attraction, utilizando um índice 
composto pelos atributos da propriedade Order do primeiro grid, mais a 
order do grid aninhado. 

E vemos claramente que para o grid aninhado, apenas serão percorridas 
as atrações que correspondem ao país e cidade do primeiro grid.



WITHOUT Base Tables

Now let's move on to the implementation case without a base table.



Grid1 and Grid2 without Base Tables

We had this web panel that implemented the same join as in the 
beginning, but without base tables. Note that in the screen we only have 
variables and there are no attributes in the properties of any of the grids.

In the events, we explicitly performed the database loading. Let's do a 
Save As to leave this one as it was, with a join. And implement the control 
break in another. We take this opportunity to remove the Count of 
attractions from the first Load, and count in the second one, to make 
everything simpler. 

Now let's modify the Work With Country action to invoke this web panel. 



Let's run... and see the attractions of France. And now those of China. The 
join is clearly noticeable and not the control break.



Grid1 and Grid2 without Base Tables

Control 
Break?

Even though the Load command of the first grid triggers the Refresh 

really nest the For each commands. It's as if a subroutine were invoked, as 
if the For each of the nested grid were executed in isolation. 

GeneXus is not finding an automatic join, and we had to 
explicitly filter the attractions of the city that was loaded in the &cityName
variable, which was loaded by the Load event that invoked the Load of the 
nested grid. We didn't have to also place a filter by CountryId because it is 
instantiated in the parameter.

Let's keep this in mind, because it will make this case less obvious than it 
might seem at first. 

The question is: How do we make the For each corresponding to grid1 
change its base table to Attraction and establish a control break by 
country, city?



Grid1 and Grid2 without Base Tables

It won't be by adding Base Trn or Order to the properties of Grid1 
(because if we did that, we would transform the implementation into one 
with a base table), but to the explicit For each of the Load event of Grid1. 

Therefore, it seems obvious that the first thing to do is to modify the first 
For each so that the Base Transaction is Attraction...

And it would also seem obvious that we should place an order clause to 
establish the grouping criteria by which we want the control break to be 
established in relation to the For each of Grid2. 



This is not a Control Break!

However, if we look at the navigation list...

It seems a bit odd, and although every For each apparently does what it 
should do, it didn't choose the same order for each one, in order to use a 
single index and make the run through more efficient. Something is not 
right.

It obviously didn't understand that it will have to make a control break.



And we can confirm this by running it. 

Note that for the attractions in France, Paris comes up twice, 
corresponding to the two Paris attractions that are available.



For those in China, Beijing comes up three times, corresponding to the 
three Beijing attractions. 

And for Brazil only once, matching the Rio attractions registered.



Attraction navigated once!

This is because, as we have already mentioned, it doesn't really nest the 
navigations. 



000000

It's as if they were two independent For each commands, only that from 
one the execution of the other is invoked, but through two separate 
queries to the database. 



Grid1 and Grid2 without Base Tables

Control Break could not be 
implemented between nested

grids

This is the equivalent to saying that we cannot really implement a control 
break between two nested grids without base tables.



The solution we have for the moment is to use, for the first For each, the 
unique clause. In other words, if several records in the Attraction table 
have the same country and city, it will keep only one of them. And for this 
one, load the variables and execute the Refresh event, and right after that 
the Load of grid2, which will execute its For each as if it were completely 
independent of the previous one.  And that is precisely why this time it will 
allow us to use the unique clause.



If now we look at the navigation list... it seems that it will work this way.



We run it... 

We have succeeded.



WITH or WITHOUT Base Tables?



Grid1 and Grid2 with Base Tables Grid1 and Grid2 without Base Tables

So, for the moment, we are finding it much easier to implement a control 
break when grids have a base table. 
Strictly speaking, it will be a true control break only in that case. 

In the second case, when grids don't have a base table, we are just 
simulating it. Actually, there will be two independent queries to the 
Attraction table and not a single one that solves everything, as it happens 
in the real control break. 

We encourage you to try everything we have seen. 



training.genexus.com
wiki.genexus.com


