How to Access External Data

Introduction

GeneXus

Application created with GeneXus

Travel Agency Database

»

Travel Agency

When we develop an application with GeneXus, the database is
automatically created, where the main information handled by the
application is stored.

However, many times we need to access other data sources for different
purposes.

GeneXus

Example of use of a list of countries from an external

source

& oa
[E) Bl ex
(B}
(]]
ATTRACTIONS =
-
G
NAME: =
=
COUNTRY: =
IMAGE: =
CATEGORY: =
=
=
=

For example, suppose we need to choose a country from a list of
countries, to assign it to some entity. In this case, it is more convenient to
access a repository where we can obtain the entire list of countries,
instead of entering them one by one through the application screens.

In addition, this list will probably be kept up to date and save us from
having to keep the data up to date.

GeneXus

Obtaining a list of countries through a web service

-
=

i

</>

REST/ SOAP

o
-

-
-
-

XML

Countries

With GeneXus, we can also expose a web service using the AP| object

One solution for this is to connect to a web service that publishes the list
of countries as a service. Consuming that resource we can obtain a file
with the data in structured form, for example, JSON or XML.

This data is used in our application, either to populate an in-memory
structure or a table. We will update this information from time to time.

GeneXus

Accessing a remote database with ODATA protocol

Another possibility is to connect to web servers that provide services with
protocols that allow us to perform read or even write operations on data
stored in a remote database.

GeneXus has a wizard that creates all the GeneXus objects necessary to
connect to these services, and with this option we will always be
accessing updated data.

GeneXus

Accessing a databasein a “legacy” system

Something that frequently happens when developing an application for a
company is that the company already has a previously created system,
whose data must be reused, either because both systems must coexist or
because we must migrate the data from the old system to the new one.

The previous system, which is called “legacy”, probably has its own
database and it is possible that the information we need to use may have
to be stored and maintained exclusively from that platform. Also, we may

be able to modify that data from our application, so we must have access
to the database and its structures.

Using reverse engineering to connect to a database

E# Data Store

£ DataView1
g Transactionl
£ DataView2

E Transaction2

£ DataViewN

'-1 TransactionN

DBRET

GeneXus

GeneXus has a wizard that allows connecting to external databases to our
application and from its tables and indexes, applying reverse engineering,
creates the necessary GeneXus objects associated with these structures.

With this mechanism, a Data Store object will be automatically created in
the default environment, which will contain the necessary database
connection credentials and configuration data. Also, Data View objects
connected to the external database tables will be created and, if we want,
the associated transactions will also be automatically created, which will
allow us to add, delete, modify or access the information, as if it were from
our own database.

This type of solution can also be applied to connect to individual tables in
different databases, creating the Data View objects ourselves or using a
wizard to import a particular external data store.

Accessing file data, microservices, RPCs and APIs
3‘%

&
I

Ei
X
[o || .cLass| -

el

In addition, as with most common programming languages, with GeneXus
we can also access individual data files, stored in an inbox or in remote
resources (on premise or in the cloud), as text files (.txt), with comma-
separated data (.csv), or in structured formats (such as .json or xml files),
or even data stored in Excel spreadsheets.

GeneXus also allows us to connect to other programs that provide us with
external data, such as interacting with microservices, invoking remote
procedures from other applications, or accessing APIs with functions
published in binary objects such as .DLLs created in C, C++, C Sharp or
NET or functions within a Java .CLASS file.

In the following videos, we will see in more detail how to use some of
these methods to access external data and the references to the
information needed to use those mechanisms that are beyond the scope
of this course.

GeneXus

training.genexus.com
wiki.genexus.com

training.genexus.com/certifications

