Custom Client Part 2

WORKFLOW INBOX — NEW ACTION

This function occurs when the user selects a process from the combo box and then clicks
the new button. This will execute a subroutine called new.

&comboProcesses y New
Sub 'New'
If > @
.Load()
a8 .Createlnstance()
> . inition.Error
If .Code > @
Do ‘Error’
Else
.Owner =
.Start()
= ‘ .Error
If .Code > @
DO A l rror '
Endif {
Endif .
Commit 2. Sub 'Error
ii msg(&error.Message)
gt EndSub

EndSub

This will execute a subroutine called new. In this subroutine we are going to have a variable of
the process definition data type and will execute the load method of this process definition data
type. These functions loads a process definition into this variable, which process definitions The
one passed by, in parameter this case the one selected in the combo box. After we have selected
the process definition data type we are going to use the method create instance of this process
definition. This method will create a new process instance, and that will be assigned to the
workflow process instance data type variable. It's very important to check if there’s an error
every time we execute a method to control the errors and take actions in case there are. If there
is no error we are going to continue and assign the user logged in to the process instance owner
property. After that we are going to start this process instance, we are going to start the
execution of the process and then we will start creating all the work items needed. After that
we are going to check if there is any error at the start of this process and if there is an error we
are going to show a message to the user

At the end of this subroutine there is the commit statement. It’s important to have the commit
statement, because all the APIs support of commit workflow don’t commit by themselves, so
we have to manage the UTL of the transaction right in the commit statement.

Pag.

WORKFLOW INBOX — EXECUTE ACTION

Now we are going to see the execute action. This action takes place when the user selects a
workitem in the grld and then press the execute bar. The first thing to do is execute the execute
event, here you see the workflow action domain with the value execute, it will be assign this
value to the variable action. Then it will execute the button pressed subroutine, in the
subroutine, in the workitem variable, which is the type workflow workitem data type, we will
use the method load in order to load the workitem selected in a variable, using the Id taken from
the grid.

Event 'Execute'
19 Raction = WorkflowAction.EXECUTE
4 Do '"Butt Pressed’
41!~ EndEvent

Sub 'Button Pressed’
&workitem.Load(&id)
Do Case
Case &action = WorkflowAction.EXECUTE
Do 'Execute’|
Case &action = WorkflowAction.COMPLETE
4 Do "Complete’
Case &action = WorkflowAction.PREVIEW
Do 'Preview’
Case &action = WorkflowAction.DELEGATE
Do 'Delegate’
Case &action = WorkflowAction.COLLABORATE
Do 'Collaborate’
Case &action = WorkflowAction.VIEW_HISTORY
Do 'View History'
Case &action = WorkflowAction.ADD_COMMENTS
Do 'Add Comments'
Case &action = WorkflowAction.VIEW_DOCUMENTS
Do 'Documents’
EndCase
Commit
If &error.Code > @
Do ‘Error’
Endif
EndSub

After the workitem has been loaded to the workitem variable it's going to execute the
subroutine called execute. In this subroutine the first thing to do is to set in processes state of
the work items, so it’s going to execute the do subroutine. This subroutine is going to verify the
state of the workitem, so it will verify the state with the workflow workitem state. If it’s open
active ready, which means that it has been not assigned to any user, the first thing to do is to
assign the workitem to the user executing the workflow inbox. So we use the assign method or
the workitem variable and it passed the variable user which has been loaded at the start event.
If there is no error it will continue. In case the workitem is open active assigned, it will validate
that the user logged in is the user which that has been executing this workitem. But in case that
the user executing is not the user that has previously executed the workitem, it will reassign the
workitem to the user who is running the inbox, so here we will use the reassign method of the
workitem and will reassign the participant to the user who is running the workflow inbox.

Pag.

155&Sub 'Execute’

pr—— ' Set In-Process State'
157 If &error.Code = @
158 &app = Bworkitem.Activity.Application
159 If Not &app.IsEmpty()
160 Do 'Open App'
161 Else
162 Do 'Documents’
163 Endif
164 Endif|
165 -EndSub
7ESub 'Set In-Process State' —
}
) Do 'Take'
)= If &error.Code = @
. &workitem.ChangeState(WorkflowhWorkitemState.OPEN_ACTIVE INPROCESS)
! &error = &workitem.Error
S Endif
b
31 - EndSub
1455 Sub 'Take'
1464 Do Case
147 Case &workitem.State = WorkflowWorkitemState.OPEN_ACTIVE_READY
148 &workitem.Assign(&user)
149 &error = &workitem.Error
150 Case &uworkitem.State = WorkflowWorkitemState.OPEN_ACTIVE_ASSIGNED
1518 If &workitem.Participant.Id = &user.Id
152 //Do nothing
153 Else
1544 If &workitem.Participant.Id = !'N/A' //Assigned to a role or a list of users
155 &workitem.Reassign(&workitem.Participant, &user)
156 &error = &workitem.Error
157 Else
158 &error.Code = 203 //The task is already assigned to another user
159 Endif
160} Endif
161l
162 Otherwise
163 &error.Code = 200 //Invalid transition
164} EndCase
165 -EndSub
148

After the take method, it will change the workitems state using the method ChangeState and it
will change to OPEN_ACTIVE_INPROCESES, which is that the workitem is running.

Pag.

After the workitem has the correct state it will open the application defined at the process
definition diagram. So we are going to use the work item variable again, the activity and the
application property, to obtain the application needed to run. If the application is not empty
then it will execute the open up subroutine. In this subroutine it has the window variable data
type to create a pop up and open the application.

277:Sub 'Open App'
27 If Not &app.IsEmpty()
279 fapp = WorkflowBuildApplicationUrl(&app, &workitem)

280 window.Url = &app

281 &window.Autoresize = False

282 Ewindow.Width = WorkflowWindowSize.APP_WIDTH

283 &window.Height = WorkflowWindowSize.APP_HEIGHT
&window.Open()

28 Endif

EndSub

1oy U

In case the application variable is empty it will execute the subroutine documents. In this case
when no application is associated to a process activity, the documents is going to appear in case
that it has been defined to do so. So it will validate that the workitem activity has the property
can work with work items true, if it hasn’t true the It will validate if the state of the work item is
correct. In case it’s correct it will execute the work with document web panel to show the work
with documents. If there is no can work with documents set up on the activity, then it will do
nothing because it has no application and cannot work with documents

Sub ‘Documents’

259 If &workitem.Activity.canWorkWithDocuments = True

260 If &workitem.State <> WorkflowWorkitemState.OPEN_ACTIVE_INPROCESS
261 Do ‘Set In-Process State'

262 Endif

263 If &error.Code = @

264 & jow.Object = WorkflowWorkWithDocuments.Create(&workitem.Id)
2865 &window.Open()

266 Endif

267 Else

26 msg('Operation not allowed')

269 Endif

270:“EndSub

WORKFLOW INBOX COMPLETE ACTION

Pég.4

When a user selects a workitem from the grid and clicks the complete button, it will execute the

event complete. Here we will use the workflow action domain with the value complete and

assigned to the variable action. After that it will execute the subroutine Button Pressed in the

subroutine, as well as in the execute action, which loads the selected workitem Id into the

workitem variable, which is of the workflow workitem datatype.

43
44
45
46
47

Event ‘Complete’
&action = WorkflowAction.COMPLETE
Do 'Buttpn Pressed”

EndEvent

Sub 'Button Pressed’
&workitem.Load(&id)
Do Case
Case &action = WorkflowAction.EXECUTE
Do 'Execute’|
Case &action = WorkflowAction.COMPLETE
Do ‘Complete’
Case &action = WorkflowAction.PREVIEW
Do 'Preview’
Case &action = WorkflowAction.DELEGATE
Do 'Delegate’
Case &action = WorkflowAction.COLLABORATE
Do ‘Collaborate’

Case &action = WorkflowAction.VIEW_HISTORY
Do 'View History'
Case &action = WorkflowAction.ADD_COMMENTS

Do 'Add Comments'
Case &action = WorkflowAction.VIEW_DOCUMENTS
Do 'Documents’
EndCase
Commit
If &error.Code > @
Do ‘Error’
Endif
EndSub

After that it will execute the subroutine Complete and in this subroutine it will check that the

workitem has the correct state before it continues. All the workitems to be completed have to
have the workitem state OPEN_ACTIVE_INPROCESES that means that it has been executed
previously.

77:=Sub ‘Complete’

33
34

& o

If Zworkitem.State = WorkflowWorkitemState.OPEN_ACTIVE_INPROCESS
&workitem.Complete()
& orkitem.Error

If &error.Code > @

Do Case
Case &error.Code = WorkflowError.OPTIONALS_SELECTION_REQUIRED
& Object = WorkflowSelectActivity.Create(&workitem.Id, WorkflowSelectionMode.OPTIONALS, WorkflowAction.COMPLETE)
& Open()
Case &e “.Code = WorkflowError.ADHOC_SELECTION_REQUIRED

Object = WorkflowSelectActivity.Create(&workitem.Id, WorkflowSelectionMode.ADHOC, WorkflowAction.COMPLETE)

Case &error.Code = WorkflowError.COMMENTS_REQUIRED
Object = WorkflowComments.Create(&workitem.Id, WorkflowObjectType.WORKITEM, False)

Open()
new()
Otherwise
Do ‘Error'
EndCase
Endif
Else
&error.Code = 204 // The task has not been processed yet
Endif

)5 - EndSub

Pag.

If it has the correct state it will complete the workitem that means that this workitem is going
to end and the next workitems in the process will be created. If there is an error, for example
because optional path has to be selected from the user, it will be prompted a panel workflow
select activity to select which path it has to be taken. In case the error is because it’s Ad-hoc
process and it has to be selected also the next activity to execute, will be prompted to say the
workflow selected activity, in order the user to select which activity will continue. In case the
error is because some comments are required in this activity, then it’s going to be prompted the
workflow comment web panel, in order to the user to entry the comments needed to complete
this task. If there is an error, the error will be shown to the user, in case there is no error, the
task has finished.

WORKFLOW INBOX — HISTORY ACTION

In the workflow inbox of the Custom Client with the preselected work item from the grid and
pressed the History Button, it will present the history panel. This panel presents a list of folder
work items that had been executed from the process instance. To do so, it executes the following
code, when the Button Jistory is pressed it will execute the event History event, and in this event
it will use, as same as the other actions of this panel, assign the workflow action domain, but
with the value VIEW_HISTORY to the action variable, and then execute the button pressed
subroutine. In this subroutine it will load to the workitem variable, which is of the workitem data
type, the Id that has been selected in the grid. This is the Id of the workitem, and then we have
the workitem assigned in this variable.

48 2 Event 'History'

49 faction = WorkflowAction.VIEW_HISTORY
Do 'Buttfn Pressed’
51 - EndEvent

Sub 'Button Pressed’
wworkitem.Load(&id)
Do Case

81 Case &action = WorkflowAction.EXECUTE
82 Do 'Execute’|
83 Case &action = WorkflowAction.COMPLETE
4 Do 'Complete’
- Case &action = WorkflowAction.PREVIEW

Do 'Preview’
Case &action = WorkflowAction.DELEGATE

Do 'Delegate’
Case &action = WorkflowAction.COLLABORATE

Do ‘Collaborate’
91 Case &action = WorkflowAction.VIEW_HISTORY
92 Do 'View History'
93 Case &action = WorkflowAction.ADD_COMMENTS

Do ‘Add Comments'

S Case &action = WorkflowAction.VIEW_DOCUMENTS
96 Do 'Documents’

EndCase
Commit
If &error.Code > @
1 Do "Error’
101 Endif
102 - EndSub

Pag.

After that we will execute the event subroutine View History. In this subroutine it will use the
window variable to open a web component, which is called Workflow History. This panel have
received by parameter the process instance Id, and here we are going to pass this process
instance Id using the workitem variable that has been assigned in the sub button pressed. This
variable has a property which is called process instance Id that returns the Id of the process
instance for this workitem and then will open the page.

24055ub "View History'

241 Bwindow.Object = WorkflowHistory.Create(&workitem.ProcessInstanceld)
242 Ewindow.Open()
243 “EndSub

If we see this panel execution, we are going to see that there is a list of workitems, all the work
item that has been executed of this process instance with the subject, the activity, the state,
the participant, when it was created, when it was ended; and a list of actions that can be
executed for this workitems.

Workflow History

Query | Skip | Undo | History -
Subject Activity State Participant Created Ended
Authorization 05/13/21 0513121
Purchases Administration completed Workflow Administrator 09:30 09:30
Manager AM AM
Authorization 05/13/21 0513121
Purchases Purchasing completed Workflow Administrator 09:30 09:30
Manager AM AM

If we see the Web panel layout it has a grid with all the elements we have seen, and a table
with all the actions.

r-LT‘CILJery' Skip Undo History EID
o u)
GRID

WFWorkltem | Subject Activity State Participant Created Ended

|&id ‘ ‘&subject ‘ ‘&activity ‘ ‘&state v| |&participant ‘ ‘&created | |&ended |

Pag.

WORFKOW HISTORY — CODE

If we look at the code we are going to see at the rules that it receives a parameter,
&Processlinstanceld.

In the Event Start it will do the same as all the panels in the Custom Client, it will check that there
is a valld session and then it will assign the user logged in, that we obtained by the connected
user property of the workflow server variable, to the variable user. After that, it will load into
the process instance variable, which is of workflow process instance data type, the process
instance Id that will have received by parameter. This will load the Process Instance into this
variable. And now that we have the process instance at the Refresh event, it will obtain all the
workitems that had been created for this Process Instance, using the workitems property.

This property returns a list of workitems, these workitems are the workflow workitems data
type and it’s assigned to the workitems variable. This list it's going to be iterated at the load
event and for each workitem of this list, is going to assign its values to the grid. For example it
will assign the Id of the workitem, the name of the activity of the workitem, the state, the subject
of the process instance, the name of the participant who executed this task, the date it was
created and the date it was ended, after it loads a role to the grid

- Event Start
&server = WorkflowCheckServerSession()
&user = &server.ConnectedUser
&processInstance.lLoad(&processInstanceld)
EndEvent

= Event Grid.Refresh
&workitems = &processInstance.Workitems
EndEvent

0 =] 5 N o= W N

=
(=]

115 Event Grid.Load

125 For &workitem in &workitems

13 &id = &workitem.Id

14 &activity = &workitem.Activity.Name

15 &state WorkflowlWorkitemState.Convert(&workitem.State)

16 &subject = &workitem.ProcessInstance.Subject
17 &participant = &workitem.Participant.Name

18 &created = &workitem.Created

19 &ended = &workitem.Ended

20

21 Grid. Load()

22iF Endfor

23i-EndEvent

24

Pag.

WORKFLOW INBOX — DELEGATE ACTION

When we execute this action we are going to delegate a workitem that we will have in our inbox
to another person. To do so, in the event delegate, as well as other actions, | will assign the
workflow action, but with the value delegate into the action variable, and then execute the
subroutine button pressed. In this subroutine it will load the Id of the work items selected in the
grid to the workitem variable, and execute the delegate’s subroutine. In this subroutine we are
going to check that the activity of the workitem has enabled to delegate functions. You can
enable the delegation selecting in the diagram the task activity and in the properties putting
true into the allow delegation property, this will enable the delegation action. If the task can
delegate then it will present the panel workflow assign to the user. This panel will present all
the users that can receive this task.

58 E| Event 'Delegate’

58 &action = WorkflowAction.DELEGATE
60§ Do 'Button Pressed’

61: - EndEvent

62!

Sub 'Button Pressed’
&workitem.Load(&id)
Do Case
81 Case &action = WorkflowAction.EXECUTE
82 Do 'Execute’|
3 Case &action = WorkflowAction.COMPLETE
24 Do "Complete’
- Case &action = WorkflowAction.PREVIEW
86 Do 'Preview’
87 Case &action = WorkflowAction.DELEGATE
'Delegate’
tion = WorkflowAction.COLLABORATE
‘Collaborate’
91 Case &action = WorkflowAction.VIEW_HISTORY

Case

gEg

Do 'View History'
Case &action = WorkflowAction.ADD_COMMENTS
94 Do "Add Comments'
35 Case &action = WorkflowAction.VIEW_DOCUMENTS
96 Do 'Documents’
97 EndCase
98 Commit
99 If &error.Code > 0
10 Do ‘Error’
101 Endif
102! - EndSub
2413Sub 'Delegate’
242 If &workitem.Activity.canDelegate = True
243 &window.Object = WorkflowAssign.Create(&workitem.Id, WorkflowAction.DELEGATE)
244 &window.Open()
245 Else
246 msg('Operation not allowed')
247 Endif
248:LEndSub
2AQ

Pag.

If we see the delegate function in execution, we can see that if we select our workitem from our
workflow inbox grid and then press the delegate button, there will be prompted a web page
with all the organization and Model and all the roles they have on my knowledge page, it says
select open arole, | can see the users. If | select a user | can confirm and this task is going to be
delegated to that user.

This Web panel is created with a window object and receives two parameters, the workitem Id,
that has been loaded in the button pressed subroutine, and the action, in this case workflow
action delegate.

Application Name

Oren ACTIVE mADY cernea o838 P
OPEMACTIE ASSIGARD g s
RN ACTIVE AT e o2 i
W ACTIVE AT oz a2 P
OFOACTIVE ST e

In the layout we are going to see that this is different from the others panels, it has three controls
and two buttons, confirm and cancel.

If we see the code, we are going to see that receives two parameters, workitem Id and action.
The Event Start it will check the workflow session with the WorkflowCheckServerSession
procedure as same as other panels. Then it will get from the WorkflowServer that has been
loaded the Organizational Model, which is part of the server. With the method Organizational
Model this will return our workflow Organizational Model data type, which in this case is going
to be OrgModel variable, then it will load the workitems receive parameter to the workitem
variable

1o pare(in: Sworkitemid, in: Saction);

1= Event Start —
2 &server = WorkflowCheckServerSession() ==
3! &orgModel = &server.GetOrganizationalModel() - A,
4 &workitem. Load (&workitemId) - i)
5: Do 'Initialize’ -)
6 “EndEvent s
-
85 Event Refresh e
9 Do 'Populate Tree')
10 “EndEvent - Y,

Pag. 1 O

Then it will refresh and will Populate Tree control and this is going to do in this subroutine. Here
list all the roles using a transitional variable method list roles, this receives a parameter, filter in
this case its empty, and it will receive here in the roles all the roles of the Organizational Model.
It will load the route of the tree and then for each role, in the role list, it will load all the roles
into the tree.

12755ub 'Populate Tree'

128

129 Broley = Rorghodel. ListRoles(afilter)

130

131 &root.Id = 1"OM"

132 frcot . Name = "Organizational Model®

133 Broot.Icon = WorkflowOrganizationalModel.Link()
134 Broot. IconwhenSelected « WorkflowOrganizationalModel.Link()
135 Aroot.Expanded = True

136 Atreetodelol lectionData . Add(&cot)

137

138 For &role in Aroles

139

140 If &role.hasParent = False

141

142 Atrechode = new()

143 BtrecNode.Id = Trim(Str(&role.1d))
144 AtreeNode .Name = &role Name

145 Etreetlode.Icon = WorkflomRole.Link()
146 Etrechiode. IconhenSelected « WorkflowRole. Link()
147 AtreeNode. .Dynamicload = True

148 &root.Nodes . Add(&trechiode)

149

150 Endif

151

152 Endfor

153

154 " EndSub

Pag. 1 1

WORKFLOW ASSIGN — WEB PANEL CODE

When it’s assigning an element because we select a user or role and then press confirm it will
validate that the Tree Node is not empty and the action is not collaborate, it will get the role
selected in the tree with the ID selected and the variable, and then will get this role, in the
Organizational Model, get role by ID, that will receive the ID of the role that has been loaded
and this variable. Then we are going to get the workflow role here in the variable role, if it's no
error it will assign. In case we are assigning to a user, we will get the user by the Organizational
Model using get user by Id, and then if there is no error it will validate the action. In the case the
action is delegate, we will use the workitem variable action delegate, this method will delegate
this workitem to this user. The user selected in the tree. And then that delegates the workitem
to this user, if there is no error we are going to commit to save all the changes and then return
to the webpage.

= Event Enter

(=)

4
63E If Not &selectedTreeNode.Id.IsEmpty()
645¢ If &selectedTreeNode.Id.ToNumeric() > @ //Role
65E If &action <> WorkflowAction.COLLABORATE
66 &role = &orgModel.GetRoleById(&selectedTreeNode.Id. ToNumeric())
67 &error = &orgModel.Error
685 If &error.Code = 0
695 [If BlocK
74 &error = &workitem.Error
75i} Endif
761} Endif
77 Else // User
78 &user = &orgModel.GetUserByld(&selectedTreeNode.Id)
79 &error = &orgModel.Error
80 If &error.Code = @
81k Do Case
82 Case &action = WorkflowAction.COLLABORATE
83 &workitem.Collaborate(&user)
84 Case &action = WorkflowAction.DELEGATE
85 &workitem.Delegate(&user)
86 Case &action = WorkflowAction.REASSIGN
87 &workitem.Reassign(&workitem.Participant, &user)
88i} EndCase
89 &error = &workitem.Error
90|} Endif
91}} Endif
92 Commit
93@ If &error.Code = @
94 Return
95 Else
96 Do 'Error'
97|} Endif
98|} Endif
99 - EndEvent
100

In this video we have seen all the Custom Client, how can we can import a Custom Client to a
Knowledge Base, why we use a Custom Client and the panel workflow inbox and all its actions.

Pag. 1 2

