
GeneXus Applications Architecture



Web Applications with Back-office Focus

So far, we have seen how transaction screens work; where data is 
validated when you exit each field and you receive a message, or that 
when entering a foreign key value the name corresponding to that key is 
inferred. This immediate response received by the user from the 
application is called Client Side Validation. 

Also, we saw that in screens generated with the Work With pattern (web 
panel objects that we'll discuss later) the information was dynamically 
loaded when we changed the page of a grid or when we applied a filter, 
and that its size was automatically adjusted in a responsive way.



Architecture of Web Applications with Back-office Focus

DB

SERVIDOR WEB

FRONT-END

CLIENT 
(light)

Browser

BACK-END

URL

Web Page

Business
logic

Some of these operations are performed on the client side of the web 
application (i.e. the browser) and others on the server side; for example, 
when it is necessary to search in the database.

The application logic is on the server side, so when we run an object in 
our application, the browser requests the corresponding page from the 
server. The server prepares the information, obtains data from the 
database if necessary, builds the screen, and sends it to the browser for 
display.

In some cases, once the page is being viewed in the browser, we start an 
action such as when applying a filter to a query (in a grid, for example). As 
a consequence, the code on the client side communicates with the code 
on the server to return the data that meets the filter, and can then refresh 
only the part of the screen involved in the action (in this example, the 
grid).  In turn, if we sort a grid column or if in a transaction we exit a field 
that causes a message to be displayed, it is resolved by the client alone, 
with no need to access the server.

In this architecture the client has some intelligence, but the decisions are 
made on the server because that is where the complete logic of the 
application resides.



What we have developed so far is basically the application back office, as 
we have seen how to manipulate the database (transactions) and how to 
query its information in a more hierarchical way, to achieve those 
additions, deletions and modifications (that is, everything built by the 
Work with pattern). However, with this same architecture we can also build 
customer-facing applications.

In GeneXus, to build these applications we use .Net, .Net Core or Java. 
GeneXus uses these languages for both client (front-end) and server 
(back-end) code.

Em GeneXus, para construir estas aplicações, utilizamos .Net, .Net Core 
ou Java, e GeneXus utiliza estas linguagens tanto para o código no cliente 
(front-end), como para o código no servidor (back-end).



Aplicações de alta performance com conteúdo mais interativo 

There are other types of applications that can be web or native for mobile 
devices, which are very powerful to display information fast and with a 
special focus on design and interactivity.

They are customer-facing applications, i.e. user-centered, with rich on-
screen information, that load parts of the page only when needed 
because they are designed for extremely high performance with the best 
possible user experience. 



Architecture of Web Applications with UX Focus

DB

SERVIDOR WEB

CLIENT 
(powerful)

Browser

BACK-END

Services

Web Page

Data Request

Data

URL
FRONT-END

Business 
logicServer 
accessGUI 
drawing

This architecture also runs one part on the client and one part on the 
server, but in this case most of the application logic is on the client. In the 
client there are 3 distinct layers: business logic, communications with the 
server, and the part that takes care of drawing the screen in the browser.

With this scheme, most of the functions are performed on the client and 
the server is only accessed to request data from the database or modify it 
and other resources provided by services.

This type of customer-facing applications that require a powerful client in 
order to deliver a high level of user experience and interactivity are more 
recent than the responsive applications we saw earlier. 

To be able to handle these demands, frameworks such as Angular, React, 
or Vue have emerged in the market, with all the power to build a smarter 
client as required by these applications.

GeneXus also allows developing customer-facing 
applications in Java, Net, or .Net Core, but the advantage of programming 
them in Angular is that the same panel objects designed for the user 
interface can be reused almost unchanged to generate the native mobile 
application, i.e. for Android or iOS.



Architecture of Mobile Applications (Online)

DB

WEB SERVER

FRONT-END

CLIENT

BACK-END

Data Request
Services

NATIVE APP

COMPILED 
APPLICATION

&
METADATA

Data

architecture of a native mobile application.
In particular, we will see the architecture of mobile applications always 
connected through Wi-Fi (online applications), which is the most common 
case of native applications, while keeping in mind that GeneXus also 
builds offline applications.

A mobile application also has a part that runs on the client (in this case, 
the mobile device) and a part that runs on the server, which provides 
information to the client.
The application code runs on the device, which accesses the server only 
when it needs data.
With GeneXus we can generate these applications for Android or iOS 
devices. The server services (which provide data to the client) can be 
generated in Java, .Net, or .Net Core.

As we can see, this architecture is very similar to that of high-performance 
web applications, and for that reason the programming method is very 
similar, with some differences that we will see later on.



In short, there will be two programming methods.

Light Client 
+ 

Business 
Logic on the 

Server

Smart Client
+ 

Services on 
the Server

Web Applications with 
Back-office Focus

Web Applications 
with UX Focus

Native Applications 
for Mobile Devices

The applications' architecture conditions many aspects of the application; 
in particular, the way they are programmed.

When the client is light, almost all application requirements will be solved 
on the server, so our programming will always be focused on server 
operations such as accessing the database.

On the other hand, when we have a powerful client, many operations can 
be performed on the client itself, without having to resort to the server. 
However, there are other operations mainly related to database 
interaction that do require the server programs.

For this reason, we must have a different syntax to indicate when we want 
certain code to be executed on the client and another on the server. This 
also applies to the programming of native applications for mobile devices.

Next, we will see how applications of each type are programmed. 



training.genexus.com
wiki.genexus.com


