
At this point, we already know how to interact with GeneXus Enterprise
AI, we know its Backoffice and Frontend, and we know how to create
assistants and test them, either by editing the prompt, through the
Playground or via API.



Now let's see an example of how to interact with our assistants from a
GeneXus knowledge base. The objective is to interact with our
MarketingAssistant so that it returns the formal description of the product
indicated by the user.



Good. In our KB we have a simple Product transaction, with an ID and Name
to which we have applied the Work With for Web pattern.

Our objective is to request the description of the product from the main
screen generated by applying this pattern.

For that, in the instance of the applied pattern, we have defined two variables:

• The &Description variable that the user will click on, and has the text “Get
description”.

• And the &AssistantDescription variable that will receive the description
returned by the assistant.



Good. The goal now is to define the procedure that will establish the
interaction with the MarketingAssistant and will return the desired
description.

Although we could create a blank procedure and start defining the
connection data through a variable of HttpClient type, what we will do is to
give GeneXus the cURL sample that we need to make the POST and
GeneXus will return the base structure for this definition.

We go to the Tool / Application Integration menu option, and choose cURL
Inspector. We name it MyChatAssistant, and paste the sample, which is
available, as we already know, in the GeneXus Enterprise AI technical
documentation.

https://wiki.genexus.com/enterprise-ai/wiki?8,Table+of+contents%3AEnterprise+AI,

We click on OK, and in the KB Explorer window we can see that the
procedure named MyChatAssistant has been created, and that it provides
the basics of what we need:

A variable called &HttpClient has been defined based on the data type of the
same name. This data type allows you to create a request, send it to a URL
and read the results.

https://wiki.genexus.com/enterprise-ai/wiki?8,Table+of+contents%3AEnterprise+AI


What should we do now?

Replace the parameters with the information of our context.

The first thing to specify is whether the call will be made using a secure
protocol or not.

For this, we must declare the Secure method. The value 0, which is the
default value, indicates that the HTTP protocol will be used, and the value 1
indicates that the HTTPS protocol will be used. We indicate the value 1.

Good. Next, we declare the Project API Token that we copied from the
platform beforehand.

Now we'll focus on the Body of the request.

What we will do is similar to what we did from Postman when we tested the
assistant via API.

First of all, we indicate the name of the assistant, which in this case is
MarketingAssistant.

Now let's think about this: Our assistant must return the description of the
product specified by the user; therefore, the product must be received by
parameter in this procedure.

Therefore, we declare the Parm rule so that the procedure receives the



product name and returns the description.

We return to the source, and in the Messages group we see the “content” which, as
we know, corresponds to the user input. We modify it so that it is parameterized and
takes in each case the name of the product that is received by parameter.

We also indicate the revision of the assistant we want to use.

5



We must now define the execution of the POST, and for that we must
complete the path with /chat.

We have already defined the execution of the query; what should we do now?
Receive the response from the assistant and return only the product
description.



If we look at the execution of the query and the response received in
Postman, we see that it looks like a structure, where the description we are
interested in is stored in the “content” item of the first element of the
Choices collection.

We save it as JSON.



We go back to our KB and import this JSON file so that GeneXus automatically
creates the structured data type that represents it. For that, we go to Tools /
Application Integration / Json Import.

We name it MyAssistantResponse and load the file.

We select OK and see the corresponding SDT created. Let's look at its
structure. Here is the item we are looking for.

Then we define the &MyAssistantResponse variable based on this same data 
type... and load it with the response, applying the FromJson method that 
requires a string.

Let's look at the structured data again. To get to the “content” item we must
retrieve the Choices collection.

So we define the &MyChoices variable based on the data type
&MyAssistantResponse.choicesItem.

It must be a collection, so we select the IsCollection checkbox.

We load the collection. Finally, in the &ProductDescription variable, which is
the return variable of the procedure, we load the value of “content” of item 1 of
the collection, which is where the answer we want from the assistant is stored.



Good. What should we do now? Call this procedure from the WWProduct web
panel.

To do so, in the events tab, we define the Click event applied to the
&Description variable.

To test it, we press F5.



We run the web panel, choose a product and click on Get description.

Then we see the answer returned by the assistant.




