GAM Components

Nicolas Adrién | GeneXus Training

GeneXus

Integration with GeneXus

Back end Data Store Front end

GAM supports platforms for running both web and mobile environments.

It is possible to define the language to be used in the back end, the database
management systems, and the platform to be used in the front end. All this from
the GeneXus Ul.

Later on we will explore each one in depth.

Tools
Extensions Manager

Database Reverse Engineering

Application Integration »

Application Help...

Import Pattern Instances

Waorkflow 3
Options
Advanced »

Explore Knowledgebase Directory
Explore Target Environment Directory
@ CMD Environment Directory

Security »

GeneXus Access Manager » Create Tables

Refactoring » Initialize Metadata

Translations 3 Applications Registration
Reprocess Permissions

GeneXus Account... Create deploy file

Update Connection File

Installation Settings...

Under Tools/GeneXus Access Manager, we can access the different functionalities
offered by the GAM within GeneXus.

From there we can:

* Create the tables used by GAM

* Initialize the metadata

* Register the applications that will use GAM
* Reprocess their permissions

* Create the deployment file

* Modify the connections file

And lastly,

* Configure its installation

GAM

GAMApplication
GAMApplicationDelegatedutharization
GAMApplicationEnvironment
GAMApplicationFilter
GAMApplicationMenu
GAMApplicationMenuFilter
GAMApplicationMenuOption
GAMApplicationMenuDptionFilter
GAMApplicationPermission
GAMApplicationPermissionFilter
GAMApplicationToken
GAMApplicationTokenElement
GAMAuditory
GAMAuthenticationApple
GAMAuthenticationCustom
GAMAuthenticationF acebook
GAMAUthenticationGAMRemote
GAMAuthenticationGAMRemoteRest
GAMAuthenticationGoogle
GAMAuthenticationDAuth20
GAMAuthenticationDAuth20Authorize
GAMAUthenticationOAuth20Token
GAMAuthenticationDAuth20UserInfo
GAMAuthenticationOTP
GAMAuthenticationSaml20
GAMAuthenticationSaml20Userlnfo

GAMAuthentication Twitter

GAMEventSubscription
GAMEventSubscriptionFilter
GAMExternal AuthenticationR

GAMAuthenticationType
GAMAuthenticationTypelpple

GAMImportRepositoryConfiguration
GAMLoginAdditionzlParameters
GAMMenuAdditionalParameters
GAMMenuOptionList
GAMOauth20AccessToken

GAMAuthy TypeCustom
GAMAuthenticationTypeFacebook
GAMAuthenticationTypeFilter
GAMAuthenticationTypeGAMRemaote
GAMAuthenticationTypeGAMRemoteRest
GAMAuthenticationTypeGoogle

GAMOauth20Userinfo GAMAuthenticationTypeLocal
GAMOauthAdditionalParameters [X] GAMAuthenticationTypeDauth20
GAMOTPEventSub: o References
GAMPermission

GeneXus

GAMPermissionFilt
GAMProcess Sessit
GAMProperty

GAMPropertySimple

GeneXusSecurity

GeneXusSecurityCommeon {5

GAMRepository
GAMRepositoryConnection
GAMRepositoryConnectionfddressList
GAMRepositoryConnectionFileFilter
GAMRepositoryConnectionFilter
GAMRepositoryCreate
GAMRepositoryCreateNew
GAMRepositoryEmail
GAMRepositoryFilter

GAMRole
GAMRolefpplicationPermission
GAMRoleFilter

GAMAuthenticationTypeWeChat
GAMAuthentication\WebService
GAMAuthentication\webServiceServer
GAMAuthentication\weChat
GAMConnection
GAMConnectioninfo
GAMConnectionInfoProperties
GAMConnectionProperties
GAMCountry
GAMCountryLanguages
GAMDescription

GAMError

Gen

GAMSecurityPolicy
GAMSecurityPolicyFilter
GAMSession

GAMSessionFullLog
GAMSessionLog
GAMSessionLogCheckPermissionFail
GAMSessionLogFilter
GAMSessionLoginRetry
GAMSessionLogloginRetry
GAMSessionLogsCountFilter
GAMSessionRole
GAMSTSAuthorizationToken
GAMSystemConnection
GAMTwoFactorfuthentication
GAMUpdateRepositoryConfiguration
GAMUpdateRepositoryConfigurationfpplications Tolmpart
GAMUser
GAMUserApplicationPermission
GAMUserAttribute
GAMUserAttributeMultiValues
GAMUserFilter
GAMUserRepository
GAMUserRepositoryFilter
GAMUsersCountFilter

In the References item of the context menu of the KB, inside GeneXusSecurity we
can find all the External Objects provided by GAM, as shown on the screen.

Let's see the structure of one of them as an example.

¥| GAMUser [Read-only] X

Structure
= ¥] GAMUser
18] Properties

-1 %3] GUID
| MameSpace
-1 | AuthenticationTypeMame

£ Name

& Login
| €| EMail
-{#¥| Externalld
-{£¥| Password
-|£3| FirstName
-{ 1 Lastiame

5] Methods
5] Get
5] GetByGEUID

Cj} AuthenticationTypeMName
@ UserMame
(@ Errors
(] Undelete
: @ Erars

Type

GAMGUID, GeneXusSecurityCommon
GAMRepaositoryNameSpace, GeneXusSecurityCommon
GAMAuthenticationTypeName, GeneXusSecurityCommon
GAMUserldentification, GeneXusSecurityCommon
GAMUserLogin, GeneXusSecurityCommon

GAMEMail, GeneXusSecurityComman
GAMUserIdentification, GeneXusSecurityCommon
GAMPassword, GeneXusSecurityCommon
GAMDescriptionShort, GeneXusSecurityCommen
GAMDescriptionshort, GeneXusSecurityCommaen

GAMUser, GeneXusSecurity

GAMUser, GeneXusSecurity

GAMGUID, GeneXusSecurityCommon

GAMError, GeneXusSecurity

GAMUser, GeneXusSecurity
GAMUserIdentification, GeneXusSecurityCommon
GAMError, GeneXusSecurity

GAMUser, GeneXusSecurity
GAMAUthenticationTypeMName, GenexusSecurityCommon
GAMUgerldentification, GeneXusSecurityComman
GAMError, GeneXusSecurity

GAMBoolean, GeneXusSecurityCommon
GAMError, GeneXusSecurity

Is Collection

Description
GAM User

User GUID {Identificator)
User name space
Authentication type name
User name {nickname)
Login

Email

External identification
Password

First name

Last name

Return current user entity
Get User by user GUID

Get User by user external identification

Get User by user login

It allows to recaver the User that was logically deleted (GAMUser.Delete).

For example, a closer look at the GAMUser External Object reveals that its
structure (like all the others) is composed of properties and methods.

Since this External Object is quite large, in this slide its content has been simplified
and explained. From GeneXus, you can see all the properties and methods it

contains.

Note that for each property and method we have a type, whether it is a collection
or not, and a description that will be helpful when using them.

Let's see an example of use.

= & | Varizbles
- Standard Variables

Loow iUser GAMUser, GeneXusSecurity

Zllser.Mame = "John”

&Mame = &User.GetName()

To use the External Object, we must create a variable of this type (GAMUser in this
case). To use it in the code, values are simply assigned to its attributes or
properties, or its methods are used to obtain the already loaded data.

To use the rest of the External Objects, the same flow and methodology is
followed.

Back end | Properties
“.1 Default (Java Web) 2 E | Filter

=Dt Stores

Lz Default (SGL Server)

Type DataStore
| A
' GAM (SGL Server) Description SQL Server
Access technology to set JDBC

List of external stored procedures

When enabling GAM in the KB, a Data Store is generated for GAM to store its
information together with that of the Application, where it is possible to configure
the technology to be used, the connection and server data, etc.

GeneXus

Platforms

Back end Data Store Front end

»

Microsoft’ (:__—'—)
PostgresQL SQL Server =
Java

Going into more details about the different platforms supported by GAM, we can
say that:

The back end can be generated under Java, C#, and .NET Core languages.

For the Data Store, many options are offered including PostgreSQL, SQL Server,
and MySQL.

Lastly, for the front end we can use web versions such as Java or Angular, and
mobile versions such as Android and Apple.

Databases

4 Build Developer Menu F3
7 » Run Developer Menu F5
Run Developer Meny Without Building CTRL +F5

= -

GAM repository Creation of GAM database Application with security

GAM DB initialization
connection properties and its tables incorporated

After running the Developer Menu, a connection to the database specified in the
GAM Data Store is established, using its connection properties, and verifying the
existence of some tables and the GAM version.

Since these tables do not exist, the GAM database tables are created. Then, the
following happens:

First, some properties related to the connection to the GAM repository are
assigned with their default values.

Next, the GAM database and all its tables are created. Before creating the tables,
the user is asked if he/she wants to create the GAM database structure.

GeneXus

Back end
GENEXUS
USERS ROLES SETTINGS ~ Administrat
ACCESS MANAGER A
+/ SHOW FILTERS Users Try a Search ADD
User Name First Name Last Name Authentication
admin Administrator User local EDIT
FIRST/ PREV /[NEXT

The GAM back end is a GAM Application automatically defined with the creation of
the GAM metadata, during the initialization process.

The purpose of this application is to configure and manage all GAM related
concepts.

GeneXus

Back end

Compiled XPZ

There are two versions of the back end.

The first one is the compiled one. By default, it is created when enabling GAM in
the KB.

The second version is through an XPZ, which are the files used by the KB Manager
to exchange objects between knowledge bases. The name is derived from the
extension of these files. In this case, GAM can be incorporated into the KB by
importing this xpz included in the GeneXus installation.

These objects are useful because they are examples of GAM APl usage.

They can be modified as desired by the GeneXus developer if some requirements
are not met (the GAM APl is available for this purpose).

11

Front end

GAM_Frontend
GAM_SD
? GAMSDChangePassword
:- GAMSDChangePasswordlser
5] GAMSDLogin
[GAMSDNetiuthorized
[oT] GAMSDRegister
" GAMSDRegisterUser
& " GAMSDUpdateRegisterUser
[GAMSDUpdatelser
m GAMExampleChangeYourPassword
fex] GAMExampleLogin
lor] GAMExampleNotAuthorized
:\1 GAMExampleRecoverPasswordStepl
m GAMExampleRecoverPasswordStep2
m GAMExampleRegisterlser
m GAMExamplelpdateRegisterlUser
lor] GAMRemoteLogin
ferl GAMSSOLogin

When GAM is enabled, all the example objects from the front end are imported
into the KB.

The GAM examples are web objects and SD panels that use the GAM API, and their
purpose is to help the GeneXus user learn how to use this API.

Another important purpose of these objects is to help the user get started with
GAM, since they include objects for login, registration, password change, and
redirection in case of Authorization error, among others.

All these objects are consolidated in the KB during the GAM activation process and
located in the GAM Examples folder; every time a new GAM build or upgrade is
installed, the user can decide whether to update these examples with the look and
feel of the application, for example.

12

GeneXus

Front end | Recommendations

GAMRegisterUser GAMSDRegisterUser

It is good practice to create copies of the examples to be used in the application. In
this way, when GeneXus (and therefore GAM) is updated, the changes introduced
will not be overwritten.

Another recommendation is to delete those panels that will not be used. One
example of this is the self-registration that we will see later.

If users will be registered in the application by an administrator, it is
recommended to delete the GAMRegisterUser and GAMSDRegisterUser panels.

13

API

m p l EXTERNAL OBJECTS
nff References
GeneXus
GeneXusSecurity
GeneXusSecurityCommon

GAM provides an API that allows users to handle data types and methods to add
security to GeneXus applications (both web and mobile applications).

When integrated security is enabled in the KB, external objects are incorporated
to allow the user to interact with the GAM API. External objects are the way to
access the GAM API. They are all distributed in a module called GeneXusSecurity,
as we said before.

APIs are those used by the example panels. From them, it is possible to perform all
the actions available in the GAM Backend.

14

GeneXus

Settings

Integrated Security Level Authentication

Application 1D 08d3dc04-2dd4-401e-8635-2160f4505da7

<?xml version="1.8" encoding="utf-8"?>
<Application>

<Id>B8d3dcBd-2ddd-481e-8635-2160T45085da7</Id>
<fApplication>

application.gam

GAM generates different files with configurations for connection to repositories.
These files are connection.gam and application.gam.

connection.gam is a GAM configuration file that contains the key associated with
each Repository to which you want to connect. The connection data associated
with the key must exist in the GAM database (it must have been previously
created using the GAM API).

In the case of Java, this file is copied to the root of the web application on the
servlet server (from Evolution 2 upgrade 3 onwards).

In the case of NET, it goes in the virtual directory (that is, the web directory).

application.gam is a GAM configuration file that contains the GAM WEB
Application ID of the KB specified in the Application ID property, and is used for
GAM to identify which web application is running.

At prototyping time, it is automatically transferred to the WEB-INF folder for Java
applications and to the virtual directory for NET applications.

When taking the application to production, this file must be included in the
deployment.

The ID contained in it must exist in an application defined in the GAM Database,
and can be configured from the GeneXus IDE through the Environment properties
in the Integrated Security section, as shown on the screen.

15

Settings - Tools

Tools
Extensions Manager
Database Reverse Engineering Connection access file generator
Application Integration » Enter your administrator credentials to obtain available repository connections. m
Application Help...

£ Import Pattern Instances

Workflow 3
Options
Advanced r

Connection file directory

Explore Knowledgebase Directory Documents'connection gam
Repositories

Explore Target Environment Directory
- CMD Environment Directory

Ayailable connections

Securit 3
v =[] GAM-Manager
GeneXus Access Manager 3 Create Tables L[] [LAN] GAM-Manager
Refactoring » Initialize Metadata BD TestMuttitenant
Translations » Applications Registration DD [LAN] TEE{M'—'““E'_'E"‘
B test GAM Repository Connections
Reprocess Permissions] LLAN] e
GeneXus Account... Create deploy file
Update Connection File
Installation Settings.

Cancel

There are GAM tools to modify the information of the configuration files for
different environments, such as Testing, Pre-Production or Production, in order to
make it easier to edit them.

For the connection.gam file, there is the GamDeployTool that can be executed
from the GeneXus IDE, by selecting the GAM - Update Connection File option.

This tool is intended for use by the GAM Manager Repository administrators.
When it is used, entries are added to certain GAM database tables depending on
the user's selection, which can be made among the existing GAM Repository
connections of each Repository.

At the end of the process, the file is generated at the specified address and then
copied to the web application.

16

GeneXus

Settings

EnableIntegratedSecurity=1
IntegratedSecurityLoginWeb=GAMExampleLogin
IntegratedSecurityNotAuthorizedWeb=GAMExampleNotAuthorized

client.cfg
DataSourcel=GAM
DataSource2=DEFAULT
<add key="DataStorel" value="GAM" />
<add key="DataStore2" value="Default" />
. <add key="EnableIntegratedSecurity" value="1" />
web.config Y g Y

<add key="IntegratedSecurityLoginWeb"
value="gamexamplelogin, objects™ />

<add key="IntegratedSecurityNotAuthorizedWeb"
value="gamexamplenotauthorized, objects" />

Other types of configuration files are client.cfg and web.config.

They depend on the generator being used:

In Java applications, client.cfg is used (where it applies to web and 2-tier
applications).

In .Net applications, web.config is used.

For the client.cfg and web.config, at the time of enabling GAM in a knowledge
base, the lines shown on the screen are set in them.

They correspond to setting the integrated security to 1, and defining the Login and
Unauthorized example objects.

In addition, a new DataSource corresponding to GAM is added, leaving the
application DEFAULT in second place.

17

Settings - Tools

DBMS |
Server/DS |

Database |

Name |

Password |

Save Close

As for the tools for these last two files, we have:

For the web.config file, there is a tool made by GeneXus called GxConfig, which
facilitates the creation of the file through the graphical interface we see on screen.

For the client.cfg file, there are different ways to facilitate the configuration of the
file that vary according to the GeneXus version being used.

18

Settings

o
2e)

GX_GAMCONNECTIONKEY

GX_GAIgO&I ESION KEY
N

GeneXus

connection.gam

In several scenarios, the common practice is to read configuration data from

environment variables, rather than from configuration files.

Since upgrade #5 of GeneXus 17, the GAM connection key can be specified
through an environment variable called GX_GAMCONNECTIONKEY.

This allows, for example, that when deploying to Docker you can configure

the connection key to be used for that instance of the container.

When trying to access any GAM API from an application, the first thing to do

is to check if this environment variable is configured to obtain the GAM

connection data.

If it is not, the connection.gam file is searched to obtain this Key.

The GeneXus Wiki contains a document describing the scenarios in which
environment variables are used, including their advantages and how to do so.

19

GeneXus

training.genexus.com
wiki.genexus.com

training.genexus.com/certifications

20

