


In the previous video, we stopped before showing you some of the consequences of focusing 
on the Angular solution without taking into account the differences compared to the native 
application.





Remember that we had defined a DSO tree to implement the style of the Desktop screens of 
the Angular application…



...where this was the root DSO, the DSO we indicated for the platform, both as default (for all 
platforms), and as default for all Angular screens. That was going to be inherited for Web 
Desktop and Web Big Screen.



For these others we had customized them with these other DSOs.





All these DSOs were built on the Base DSO, in which we had defined all the general tokens of 
the application: both the color tokens (with their light and dark variations)...



...such as those for fonts, as well as those for font size.



And we had also added there the fonts and typography classes that we had identified in the 
Preparation stage.



You may remember that then we had already analyzed the variations that the font size tokens 
would undergo, according to the screen size, and we had also identified some variations for 
the typography classes.



And we had expressed all this in two parallel DSOs.

Thus, for Tablet we had created this TravelAgencyTablet DSO, where we had specialized those 
variations that we had identified. We should, in fact, call it similarly to its Desktop parallel: 
TravelAgencyBaseTablet.

And it should import the TravelAgencyBase, because it specializes it. By importing it, what it 
does is to change the values to the fontSizes tokens... It also adds classes that were not 
needed for Desktop but are needed for this other screen size.



Of course, we will need to have the root DSO, TravelAgencyTablet, which is the one we indicate 
here for Web platform of that size.



And if we want the same DSO to also work for the native application in this size, we can place 
it here as well.



And the same will be true for Phone size. Here I have already created the parallel structure.

This was the DSO that we had created in the preparation stage (I renamed it), to which I had to 
modify some things that I need you to see to illustrate the point.



Since it matters to the Desktop analog, only the tokens that change should be here and not the 
ones that keep the same values, such as the color tokens. Why, then, do all these color tokens 
appear, instead of just the font size tokens?



Don't mind this. I had to temporarily copy all the Desktop tokens whose value used another 
token, because this indirection is not working for the native application. I had to assign their 
absolute values. This will be fixed, so don't worry. This whole section will be gone when this 
bug is fixed.



What we do have to worry about is how we define the fonts.

Before: all these classes are the ones we had identified in the preparation stage.

The Application and ApplicationBars classes will have special semantics for native 
applications, as we will see later. I will not show them now.



Now let's turn our attention to the fonts...



We had inserted as files in the KB the non-default fonts that we were going to use; for 
example, all the Heebo fonts of different weights, remember? But we had integrated only 
those of woff2 format, which, as we had said, were the best for Angular. However, as we also 
said at the time, they cannot be used in native environments.



That's why I added the same fonts but now in ttf format.

If we had used for Angular the ttf ones instead of the woff2 ones, we would not have this 
problem, although the ttf fonts are not the best for Angular.

What should we do then in this case where we have the 2 types of fonts?



In the Base DSO for Desktop we had the font-face rules that declared the fonts. Clearly we will 
have to specialize them for our DSOs for native applications, so that now they take the ttf file 
and not the woff2.

That is, we would have to copy for both TravelAgencyBasePhone and 
TravelAgencyBaseTablet all these font-face rules and simply change the file to the ttf.



But what if we want to use woff2 for the Angular application in Phone and ttf for the native 
one in phone? There we will have no choice but to specialize.

That is to say, to have a DSO tree for the Web Phone platform and another for the native ones.

Then we would specify here the default for Phone that we will want to apply only to the native 
ones and here its exception, the one for the Web, that will use the woff2 format.



But we have a bigger problem than that (let's assume we use the ttf fonts for Angular as well). 
The problem is that we had built the solution in Angular taking advantage of the fact that we 
could specify properties that were valid as default for all classes by specifying them under the 
Application class, remember? And that's how we decided to call all of them Heebo, regardless 
of their weight, and then differentiate them by the font-weight property.

In this way, we were able to define a primary token for the Heebo family, and in the Application 
class indicate that this will be the default family.



In this way, in the classes that used that family, we didn't have to indicate the family, but only 
its weight. Here there are two assumptions that don't work in the native world with GeneXus 
(at least not for the moment):

One: that the properties specified in the Application class will be valid by default for all 
classes. This is true for the Angular world because that class is applied to the body tag of all 
HTML pages...



But in the native world that class only controls some general behaviors of the application, like 
the colors of the Application Bar, actions, and so on. So if I place the font-family property here, 
it will not be valid by default for all the controls of all the screens.

And second and even more important: in Angular, since the font family names are repeated, 
what identifies the font is the name and weight pair. This is not the case (at least for the 
moment) for native applications. What identifies the font is the family name.



So we have to give different names to the Heebo fonts.

And the same goes for the other families.



But this means that we have to redefine all the typography classes. For example, these ones...



This secondary font is Rubik... so we have to make this change...



And here is another one...



But not only that, but also, the classes that we didn't have to modify because they came from 
the TravelAgencyBase DSO will also have to be modified.

Here we see, and I take the opportunity to show you, how we have the class h1... to which we 
could also remove the font-weight...

Note two things: first, that if in this DSO that imports this other one I want to change some 
properties and/or add others to a class, I don't have to copy all those that don't change. Those 
will be valid.

That's why I left all these commented, because they are the same; I don't have to indicate 
them again here.
But I do have to indicate those that vary or are added. In this case the line-height changes 
between Desktop size and Phone size. But if it didn't change, the point I wanted to show you is 
that having ignored this difference between Angular and native applications regarding font 
definitions makes it necessary to specify all the typography classes in the child DSO, even if 
they don't change anything, just to be able to indicate the font family correctly. And this is 
expensive.



If we had known beforehand we wouldn't have chosen this solution that we implemented in 
Angular. If we don't want to touch the DSO for Desktop Angular we will have to select all these 
classes, at least to change their font-family indication.
This is how the changes would look like: we have to declare the font-face rules to identify the 
font family uniquely by name...

And then we have to add all the typography classes, even if only to indicate the font family by 
name.



I changed something else in these ones, and I didn't analyze these others to see if I should 
change anything else: I only changed the font family. But note that I had to do it one by one 
with all of them.



This was probably troublesome for you. It was just an example of the obstacles that can 
emerge when implementing multiexperience and that can be reduced to a minimum if you 
know the differences from the beginning of the development.



The reason is that native applications haven't been built on the CSS paradigm and this will 
have an impact, although the aim is to bring the two worlds as close as possible in GeneXus.



To inspire you, I advanced quickly in my KB so that you can see in this emulator how the 
screens of the Android application for Phone look like.



For example, we see the hamburger menu (on the left, as is the standard in their operating 
system, and not on the right, as proposed by Chechu's design)...



We see as title in the Application Bar the name of the object being loaded, and not this icon 
and text that I will show you later how to change in the simplest way.



Note that in the Attractions panel I removed the Header, as indicated in the design, and that 
for now I implemented the carousel as a horizontal grid (to make it quick and easy)...



...and that if I tap on an attraction it takes us to the Attraction panel and automatically, and 
also according to the operating system's own mechanisms and Android's design guides, the 
back button appears to return to the object that called it.

Okay, I'll stop here so that it doesn't become boring and we'll continue in the next video.




