
Let's pick up where we left off in the previous video.

See what happens if I place a button on the Application Bar on this copy of the Home panel,
from which I removed the Caption because I assigned it the hamburger image I downloaded
from Figma.

And what I do in the ClientStart is to invoke the menu (this copy of the menu, which is identical
to the menu we had, but now it invokes the copy of Home and not Home).

But note that before invoking the menu I indicate that its target will not be the central one, the
default one, but the one on the right.

When the navigation style is Slide for an Android phone, we will have two mandatory targets:
the one on the left, which is the hamburger menu, and the central one, which is where every
panel will be loaded by default.

Here we want to use a target on the right, for which, to have it displayed, we have to use the
Navigation external object, which is in the GeneXus module.

However, implementing the hamburger menu is not as easy as it may seem at first glance.

I'm not going to go into details here, but it's enough to see that, while if I use the platform's
own menu, when I choose Attactions the hamburger menu appears again and only if I go
deeper into this other screen does the back button appear to return to the caller, and there I
get the hamburger menu back...

... if I go this other way, that of the manual menu, actually here I'm in a panel that doesn't have
the semantics of the menu. It's a panel like any other, which is in the same stack of
invocations, so when I call Attractions, we see that the back button already appears there (of
course if I go deeper this also happens; but note that I click back to Attractions and in the
following back it takes me to the panel from which I started).

I'd have to do a few more things here to emulate the hamburger menu, like invoking
CallOptions Type Replace. We're not going to see it.

Because even if we solve it, the solution will not work when we remove the Slide Navigation
style. Note that in this solution we have a duplication: the automatic solution, with Slide
Navigation, and the manual one, opening the panel on the right target. We would then like to
remove the Slide style so that it no longer places the hamburger menu on the left. However, at
the moment right target only works with split-screen navigation styles. Flip is not one of
those.

So if it is essential to have the hamburger menu on the right, against Android conventions, we
will have to find another solution.

To stay on the subject of menus:

Note that in the Figma design we have a double menu of the application. We have the
hamburger, and this other menu in the form of tabs, which invokes objects that we haven't
even designed yet, but that will exist. This tabbed menu is not typical of web applications, but
of native ones.

I had mentioned a while ago the Menu object, which used to exist only for mobile applications,
but it has been extended and now it is also valid for Angular.

The menu object is very specific: it implements a menu of actions and that's why it has the
Main Program property set to True by default, because it is assumed that a menu will be the
entry point of the application. Through that menu and its navigations, it will be possible to
reach all the screens of the application.

Here I added three actions, which will correspond (just to test it)...

...to call these three panels. And when the menu is executed, the first item specified will be
invoked by default.

But let's also see that it offers three ways to display those items: either as a list of items,
which is similar to the one we had implemented in the panel (here we have this copy), as a
table of items, or as tabs.

And in each case, it uses the platform's native way of displaying them.

For example, in the case of Android the tabs are shown above.

Of course we will have classes to style the menu items: the set...

...and each item.

Also note that I associated an image with each item, which, as you can imagine, I downloaded
from Figma and added to the KB.

We will have to choose whether this tabbed menu will be the entry point of the application or
whether the hamburger menu will be the entry point, because, at least for the moment, we
can't have both at the same time automatically.

So, if we choose to have tabs, then the navigation style will not be Slide, and this will be our
main object, the entry point. Here we will have to manually implement the hamburger menu (to
open from the left).

If, on the other hand, we choose the hamburger as the entry point, then we will leave Slide as
the navigation style and we will have to manually implement the tabs.

For example... as we will need them in all the panels, I created a Stencil where I inserted the 3
images, centering them and giving them the dimensions I took from Figma, as we already
know how to do...

I assigned it this class…

...where I assign the background color that I took also from Figma... and then I would have to
insert the Stencil in all the panels.

Here I tried only with this copy of the Home, where you can see that I rearranged the layout
controls and left the main table with the Header stencil in the first row, and the stencil with the
imitation of the tabs in the last one, both with fixed height, and the middle one with variable
height.

And just to try it, in the tap event associated with each of the images I invoke the only panels I
have at the moment.

The main object of my application will now be this copy of the menu, which will act as a
hamburger, where I invoke this copy of the Home... And so, if we try...

We have the automatic hamburger menu and here the manual tabs menu...

Here I don't have the menu because I haven't added the stencil to the Attractions panel yet...
and I haven't added it to the Contact panel either.

Here I made copies of those two (so that the evolution of the objects can't be identified in the
xpz that I include as material) and now I've added them...

...and I changed the Menu to invoke them...

...and also from the tabs options I invoke these objects.

And now this is how we see the screens.

Something I had overlooked before and now I had to take care of: I need the Header and tabs
to be fixed at the top and bottom and the scrollable content to be in the middle. How did I do
it?

By setting Auto Grow in the main table to False and the behavior when the entire content
doesn't fit on the screen: in this way instead of scrollable.

And, on the other hand, for the internal table we set Auto Grow also to False, but with Scroll.

On the other hand, a consequence of this being an imitation of the tabs menu and not the
application menu itself, is that when an object is called from it, the back button appears. We
don't want this, we want it to behave just like the hamburger menu...

...which is the application menu, and for that reason when invoking objects from the menu the
back button is not displayed.

To imitate this we invoke with CallOptions Replace. That is to say, before invoking the object,
we instruct it to replace the current one in the invocation stack.

And so we do it for the three panels.

In this way we never lose the hamburger menu.

Of course, if we go deep we're going to have the back button.

I recommend again to watch this video to understand it thoroughly.

In short: for this solution we chose we have this object as the entry point of the application,
automatic hamburger menu (because of the Slide navigation style)...

...and the manually programmed and designed tabs menu.

I'll show you some aspects for you to explore because I don't want to go that far.

For example, note that in this field I would enter the destination I would like to go to and I
would expect it to take me to a screen showing its information (tourist attractions and so on).
I don't have that screen implemented, but I want you to see that this feature is built into
GeneXus.

It can be found through Control Type by choosing Search-Box.

Here is this wiki page to look into it...

...and also this video.

Note that for each control of Attribute/Variable type that by default is of Edit type, it can not
only be a ComboBox, a Radio Button, a Check box, or a dynamic combo, but all these other
options as well.

In addition, I don't want to leave out the case of the Grid.

Here I have the Attractions panel and here the copy from which I started to add the tabs. The
grid is identical in both for this layout.

What I did when I created the layout for Any Phone was to initialize it with the layout for Any
Platform, which was the one we implemented in the previous modules of the course, for
Angular Desktop size.

I'm going to leave that layout on this side, and here the Any Phone layout, for this copy, so we
can easily compare them.

So what I did in order to quickly show you a nice looking panel for Android Phone was to
simply change the type of Flex grid...

...to standard grid but with horizontal Scroll Direction...

Note that the items remain fixed in the place where we stop scrolling, even if they are split on
the screen. This behavior is given by this property.

On the other hand, see all these options offered by the Item Layout Mode property...

And also note that we could have chosen Horizontal Grid instead.

It will be useful to understand the differences, as well as the particularities of all these other
types of grids, in order to choose in each case the one that best suits our needs.

As an initial approach, I recommend this video from the Mobile course.

Note that much (if not all) of this applies equally to Angular.

Going back to our case, to make the Attractions screen look like this, the other thing I did was
to use only the Small layout item...

Note that in the Load event it will only execute the else that loads both items layouts if it is not
Android or Apple.

And then all I had to do was adjust the height and width of the canvas....

...and some of the distances from the edges.

As for the classes and DSOs, I didn't have to do almost anything else to make everything look
like this.

If at the beginning of this module it may have seemed that multiexperience was troublesome,
here it will be quite the opposite: I open the base DSO for Phone that we were working on,
which was built on top of the base DSO for Angular Desktop, updating the font size tokens and
the typography classes.

And note how little work I had to do to style the screen for Android.

For example, the name of the country is looking like this and it's because of this class that had
the same control for the Any Platform layout (the one we used for Angular Desktop)... which I
didn't change at all when I created the new layout from this other one...

And at the class level, remember that we had copied it when we started the project, many
videos ago, to be able to include it later in this other variation. Now all we did was change the
reference to the font and nothing else.

We know that the font-size will be the right one, because we had redefined it in this DSO, at
that time.

But, for example, we didn't check if this line-height is the right one for this size...

...also, we didn't take into account that this property will have no effect and that's why the text
looks like this.

This text should also be displayed in lowercase.

See that the class is this one... to which, like the other one, I only changed the definition of the
font family. Everything else is as we had specified in that early stage.

But... I realized when I executed (before showing you anything of this module) that the
uppercase value was not applied...

...and then I changed it programmatically here.

For the rating it is the same. Lastly, the grid had this class...

... through which we gave the Desktop application the margins of each item depending on
whether they were at the top or at the bottom.

Here I had to redefine it, not only because for now we have only one type of item, but also
because the logical properties of the margin don't work yet for the native world.

In the next video, we'll start by summarizing what we've been seeing in this module, give a
couple more ideas and end it. I look forward to seeing you there.

