
………..……………………………………………………

Formulas

An encompassing look

In other videos, we have explained what global formulas and inline formulas are by analyzing the
different types according to their navigation, including horizontal formulas, aggregation formulas,
compound formulas and their corresponding use cases.

In this video we will try to provide a broader look, not a detailed one, to discover when it is
convenient to use formulas according to their type and when we can use an alternative solution;
also, in which cases we have restrictions and how we can lift them, what is the cost of adding
redundancy and other observations that will help us integrate the concepts on this topic.

If you have any doubts about the concepts of the formulas on this video, or you want to review them
before watching this synthesis, we suggest you watch the videos on formulas of the Advanced
GeneXus Course.

1

………..……………………………………………………

Global formulas vs. Inline formulas (local formulas)

Global formula

Inline formula

Knowledge Base

Local scope

Global scope

A global formula, also known as a “formula attribute,” is a calculation assigned to an attribute in a
transaction structure.
They are called “global” because when defining the calculation in an attribute, its definition remains at the
knowledge base level, and therefore all objects will have access to the attribute with that calculation.

Once we associate a calculation with an attribute, it will not be stored as a field of a table in the database,
and for this reason they are also called “virtual attributes.” However, the global formula attribute is
associated with the table to which it would have belonged if it had not been defined as a formula. This
associated table represents the context of the formula; that is, at the moment the formula is triggered, it is
positioned in a certain record of that table.

Only attributes can be defined as global formulas and not variables, since attributes have global scope in
the knowledge base, while the scope of variables is limited to the object where they were defined and
cannot be accessed from another object.

If we use a formula in a calculation that we implement when we write code in an object, such as in the
source of a procedure or events of a panel or web panel, or in a data provider, or in the Conditions tab of
an object, we are defining an inline formula.

Since we can write inline formulas in any object where we can write code, most of the time we assign this
calculation to a variable, as we could only assign the value returned by a formula to an attribute if we are
updating the table through a For Each in a procedure object.

Since variables have local scope to the object, inline formulas are also known as local formulas.

In the case of data providers, the elements on the left side of the assignments are part of a hierarchical
structure that only has value within the data provider, so their scope is also local. The same applies if inline
formulas are used in the Conditions tab of an object.

2

………..……………………………………………………

When to use horizontal formulas and when to use aggregation formulas

- Count
- Sum
- Average
- Max
- Min
- Find

Aggregate formulas:

The navigation of a formula determines whether it is a horizontal or aggregation formula.

When we have a formula that navigates a single record of a table (possibly accessing attributes of its
extended table), we say it is a horizontal formula.

If the formula accesses many records of a table, then it is an aggregation formula.

Therefore, if we want to retrieve a value from a calculation that can be obtained with data from a single
record and the associated records of its extended table, then we write a horizontal formula. This type of
formula allows us to assign different values depending on certain conditions, and to take a default value in
case none of the established conditions are met.

Horizontal formulas are essentially global (defined in the structure of a transaction) since when we write a
calculation involving a single record in the code of an object, this calculation is part of the procedural
(imperative) implementation, possibly within some conditional or repetitive structure and does not differ
from the rest of the implemented code, so it does not make sense to talk about horizontal inline formulas.

If, on the other hand, we want a value that depends on the search and/or processing of multiple records
(and their associated records of the extended table), then we will use some of the aggregation formulas,
such as count, sum, max, min, find, or average.

Aggregation formulas can be global (assigned to attributes at the transaction structure level, which
indicates that those attributes always take the result of a calculation) or local (inline). They can be assigned
to attributes or variables; to elements of a data provider; as part of filters (such as tab conditions or
directly in For each commands, groups of Data Providers, etc.) that are evaluated at runtime.

3

………..……………………………………………………

Optional parameters in aggregation formulas

AggregateFormula(AggregateExpression, AggregateCondition, DefaultValue, ReturnedValue) if TriggeringCondition

optionaloptionaloptional optional

Sum(InvoiceAmount) : Summarizes InvoiceAmount from all records of the INVOICE table.

Sum(InvoiceAmount. InvoiceDate=&today) : Summarizes the InvoiceAmount values from the invoices

issued today.

Max(InvoiceAmount. InvoiceDate=&today, 0, InvoiceAmount) : Retrieves the maximum value of

InvoiceAmount from the invoices issued today. If there are no invoices issued today, the returned value will be 0.

Max(InvoiceAmount. InvoiceDate=&today, 0, InvoiceAmount) if CustomerId = 4 : Only for

issues of customer with Id=4, it retrieves the maximum value of InvoiceAmount from the invoices issued today. If

there are no invoices issued today, the returned value will be 0.

Let's look at the parameters of an aggregation formula and their roles.

Aggregation formulas have a first mandatory parameter that is the aggregation expression, which
establishes the table that will be run through by the formula.
It is recommended that this attribute not be a key, to avoid possible ambiguities when GeneXus
determines the table to be navigated, especially if in the other parts of the formula there are no other
attributes that allow determining the uniqueness of the table; for example, when the formula has no
other parameters than the first one.
In particular, this attribute can be a formula attribute; it doesn't have to be a stored attribute, since every
formula attribute has an associated table.

In addition to the first mandatory parameter, an aggregation formula can have other parameters, all of
them optional.

The first one after the aggregation expression is the aggregation condition; that is, the condition that the
records to be counted, summed, averaged, etc. must meet.

The next parameter is the default value returned by the formula if it doesn't find any record that meets
the aggregation condition.

The last parameter will be the attribute containing the value to be returned in case records have been
processed.

After the “if,” the triggering condition states what condition must be met for the formula to be executed.
This condition is a logical expression as complex as necessary.

4

………..……………………………………………………

Restrictions on global aggregation formulas

Since the attribute of the aggregation expression is arbitrarily chosen, the formula could navigate any
table in the database. Therefore, we could make the table run through to be the same as the table
associated with the formula attribute.

Let's analyze what would happen in this case.

Consider a case where given an invoice from a customer, we want to find the date of the previous
invoice from the same customer. To solve this, we will use a Max formula similar to the one we
defined before.
We realize that we must distinguish the attributes of the associated table record from the attributes
corresponding to the records of the navigated table where the search will be made.
To do so, we add the following auxiliary attributes: InvoiceAuxCustomerId defined as a horizontal
formula that takes the CustomerId value and the InvoiceAuxDate attribute that takes the InvoiceDate
value.

Note that we are trying to define a formula that will navigate the same table associated with the
formula. The formula is defined in the Invoice transaction, so its associated table is INVOICE and since
the aggregation expression attribute is InvoiceDate, the table navigated is also INVOICE.

As we saw before, the associated table represents the context of the formula, so when the formula is
triggered, it is positioned on a certain record of that table. Therefore, the formula will be filtered by
the identifier of the record where it is positioned and will only navigate a single record!

That is to say, we will not be able to have a global aggregate formula that navigates the same table
where it is defined, because it will not be able to run through it as we need in this case to find the
maximum.

If we need this functionality, we could define the formula by invoking a procedure object that returns
the calculation, as we will see next.

5

………..……………………………………………………

Global formulas that call procedures

We will create a procedure that receives an invoice from a customer and returns the date of the
previous invoice from the same customer.

So we define the InvoiceBeforeDate attribute as a formula and in the form editor we invoke the
GetInvoiceBeforeDate procedure, passing as parameter the InvoiceId of the invoice of interest.

In the source we implement a For Each that runs through the INVOICE table filtering by the InvoiceId
received by parameter and retrieve the date and customer of the invoice received. Next, we invoke a
subroutine that runs through the invoice table again, sorted by invoice in descending order, and we get
the invoice of the same customer whose date is the highest possible, but lower than the invoice
received by parameter.

In this way, we are doing what we were trying to do with the max formula, which is to maximize the
date of the invoice from the same customer but which is lower than the one of interest; in other
words, the date of the previous invoice from the same customer.

The fact that we can define a formula that invokes a procedure to perform the necessary calculation
opens many possibilities because this calculation can be as complex as we want, and then we can
simply use the formula attribute from any object in our knowledge base.

6

………..……………………………………………………

How to define a formula attribute as redundant

Although redundant formulas are discussed extensively in another video, here we will review some
concepts.

In some cases where the formula is triggered many times, for performance reasons it is convenient to
define the global formula attribute as redundant. This will cause the attribute to be stored in the
database; therefore, the time it will take to retrieve the value will be less than the time needed to
perform the calculations.

To define an attribute as redundant, we do it from the transaction structure: right-click on the column
bar, click on Column Chooser, and add the Redundant column by dragging it to the column bar.
Then in the Redundant column we select the checkbox to define the attribute as redundant. A “+” sign is
added to the formula symbol to indicate that it is redundant.

7

………..……………………………………………………

Implications of defining a global formula as redundant

More objects in the KB

Every formula inside must be defined as redundant

To redefine the formula, redundancy elimination is needed

Formulas based on formulas allow only 1 nested level

A global formula cannot be nullable

The redundancy update is only triggered in trns forms or in BCs

A subtype cannot be defined as redundant

Defining an attribute as redundant has certain costs that must be considered.

First of all, for the database value to always be up to date, GeneXus will create procedure objects that
will be triggered every time the data involved in the formula calculation changes. This implies that, for
each formula attribute that we define as redundant, the number of objects in the knowledge base will
increase.

In addition, if the formula attribute that we want to be redundant was defined based on other attributes
that are also formulas, we must also define those other attributes as redundant.

Another limitation is that aggregation formulas that are made redundant, defined based on attributes
that are also redundant formulas, allow only one nesting level.
If this limit is exceeded, its redundancies will not be correctly maintained.

To change the definition of a redundant formula, you must first remove the redundancy, make the
change, and define the formula as redundant again.

Global formulas defined as redundant do not support null values, so we cannot set the Nullable property
to Yes.

A subtype that is a formula cannot be defined as redundant.

Finally, the procedures in charge of updating the stored value will be fired only when the record is
edited through the transaction form or through a business component of the transaction. This implies
that if the data involved in the formula is being changed from a procedure object, the update
procedures will not be triggered automatically and we will have to force this update explicitly, invoking a
utility created by GeneXus for this purpose.

In short, we must think carefully when deciding to define a formula attribute as redundant, since these
restrictions can make the implementation unfeasible.

8

………..……………………………………………………

Alternative solutions to a redundant formula

Vs.

Stored attribute Stored attribute

When an attribute value can be obtained with a calculation, in general we define it as a formula in the
transaction structure and this attribute is no longer stored in the database. If we need the attribute to
always be stored, we can define it as redundant, so GeneXus automatically creates procedures in charge of
updating its value and storing it in the database.

However, we could also assign the calculation to the attribute by means of a rule. The attribute doesn't
disappear from the table just by assigning a value to it, so it doesn't become a virtual attribute, but
continues to be a stored attribute.

Therefore, in terms of the update and the attribute being stored, updating the attribute by means of a rule
and defining it as a redundant formula could be considered equivalent solutions.

As an additional advantage, with the rule the attribute will still be editable in the transaction form, but with
a drawback because the rule can't be triggered on demand. Therefore, it is not possible to force the
attribute to be updated, which can be done with a redundant formula attribute.

The timing of when to use one solution or the other depends ultimately on how we will use the attribute in
our application.

9

………..……………………………………………………

Inline formulas in a For Each: implicit filters and edge cases

INTERSECTION: CountryId

Implicit filter

Table navigated by the formula: ATTRACTION

Base table of the For Each command: COUNTRY

Let's look at the case of inline formulas defined in the body of a For each command.

As we have already seen, the formulas determine the table to navigate, by the attribute or attributes in
brackets. In this case, we have included the AttractionName attribute, so the table to be navigated by
the formula is ATTRACTION.

In the example we don't want to count all those in the ATTRACTION table, but those corresponding to
the country where we are positioned in each iteration of the For each that will run through the
COUNTRY table.

As the formula is defined within a For each command, it is in a context in which a table is being run
through; in this case, the table of countries. Note that there is an attribute in common between both
navigations—CountryId. That's why GeneXus determines an implicit filter by the attribute in common,
so that for every country found by the For each, only the attractions from that country are counted.

Another requirement is that only countries that have more than two tourist attractions are listed.
To solve this, we can use a count formula as part of the filter expression in the Where clause of the For
Each.

This count formula, defined as the previous one, will return the number of attractions of the country in
which the For Each is positioned in each iteration (due to the implicit filter mentioned before); we use
that to filter those countries for which the number of attractions is greater than two.

10

………..……………………………………………………

Inline formulas in a For Each: implicit filters and edge cases

Navigated table: TRIP

Base table: TRIP

Now let's see a particular case, in which the table navigated by the formula matches the base table of
the For Each.

Suppose that given a customer who has many trips, you want to retrieve the data of a trip made
immediately prior to a given date; that is, the last trip before that date. The procedure receives by
parameter the identifier of the customer who wants the information and the search date.

In the source of the procedure there is a For each that runs through the Trip table and the where will
filter by the TripId returned by the Max formula. Then the data corresponding to that trip will be printed.

If we analyze what we have implemented, the For Each will iterate on the TRIP table and set that context
for the Max formula.
The Max formula will also iterate on the TRIP table, but due to the context, an automatic filter will be set
because both tables are related. In this case, it is the same table, so the formula will be filtered by the
TripId that is positioned in the For Each.
Therefore, it will always return that TripId where the For Each is located, so the formula will never run
through the TRIP table since it will only access one record.

11

………..……………………………………………………

Inline formulas in a For Each: implicit filters and edge cases

The solution in this case is to first run the formula to search for the trip identifier that meets the desired
conditions, and then filter the For Each by that identifier value.

In this example, if we define an inline formula within a context (the base table of the For each), the same
happens as we saw in the example of the global formula, whose associated table matched the navigated
table, and the associated table provided the context.

Unlike horizontal formulas that need a context (since they can only use attributes of the associated table
and its extended table), aggregation formulas do not need it, but if they are defined within a context,
the context will act as a filter for the formula.

12

………..……………………………………………………

Inline formulas in a For Each: implicit filters and edge cases

Returns the list (without repeating elements) of all
categories that have attractions, each with the

corresponding number of registered attractions.

Base table of the For each:
ATTRACTION

Table navigated by the formula:
ATTRACTION

Now let's see another case of an inline formula defined inside a For Each, where the table navigated by
the formula matches the base table of the For Each. Note that, in both cases, the table is ATTRACTION.

However, in this example we have added a Unique clause by CategoryId and because of that, GeneXus
will group the attractions by category, both in the For each and in the formula. Therefore, the Count
formula will add from the context an implicit condition in its evaluation: it will count all the attractions for
the attribute declared in the unique clause.

It’s as if it were a control break, breaking through CategoryId.

Thanks to this additional condition provided by the Unique clause, GeneXus can solve the problem that
the table browsed by the formula matches the base table of the For each, since only the attractions of
the category given in the Unique clause will be counted.

13

………..……………………………………………………

Attribute = Max(...) if condition1;

(2 * attrX) + 100 if condition2;

Sum(attrY) otherwise

Attribute = procedure(...) if condition1;

Min(...) if condition2;

10 if condition3

Attribute = 2 + Count(…) * Sum(…) if condition;
Attr1 + Attr2 * Attr3 otherwise

Compound formulas

Attribute = Count(…) if condition1;
Sum(…) if condition2;
Find(…) if condition3;

In GeneXus, we can define complex formulas using compound formulas.

Compound formulas are those that integrate several conditional aggregate formulas, and may also contain
horizontal expressions with triggering conditions.

Conditions are any valid logical expression, which can contain attributes belonging to the extended table
of the table associated with the attribute being defined as a formula.

The first condition, when evaluated to True, will cause the result of the formula to be that of the
expression to the left of that condition and the other expressions will not continue to be evaluated.

14

………..……………………………………………………

Example

Let's see an example of this type of compound formulas in the travel agency reality.

Here we see that the FlightOccupancy attribute was defined based on horizontal expressions that assign
the corresponding value of the Occupancy domain (Low, Medium or High), depending on the number of
seats on the flight, which are calculated with aggregate count formulas.

In particular, in this case, we could have replaced the aggregate formulas with the FlightCapacity
attribute, but it is perfectly valid to leave it as it is defined.

In this implementation, the structure is that of a horizontal formula and the aggregate ones were
included in the triggering conditions.

Compound formulas provide great flexibility to define calculations, and a large number of situations can
be modeled.

15

………..……………………………………………………

Conclusions

Declarative
definitions

(global formulas)

Less code
writing

Shared
knowledge

Centralized
maintenance

Optimized
generated code

After this conceptual review of the use of formulas in GeneXus, we can say they are very useful in many
cases, and essentially provide the following advantages:

- Declarative definition instead of procedural code for global formulas.
- They allow us to save code, especially in the functionalities of aggregate formulas that process many

records. In turn, this frees us from having to iterate on the records and implement the logic by code
to count, add, maximize, etc.

- They are a way to share knowledge, for example, in the case of formula attributes that can be used in
any object of the knowledge base.

- Maintenance is centralized, since in the case of a global formula, we change the definition in a single
place—the transaction structure where the attribute was defined.

- Defining formulas is even better than writing procedures and invoking them. When a formula is
defined, GeneXus is aware of its definition and is able to generate optimized statements by
combining the formula query with the query in which the formula is present.

In summary, formulas make application development much easier and it is strongly recommended to
learn how to use them.

To learn more about this topic, visit the wiki to continue reading.

16

………..……………………………………………………

training.genexus.com

wiki.genexus.com

training.genexus.com/certifications

17

