
Next, we will take a closer look at some of the concepts of the formulas.
Let's start by looking at the difference between defining an attribute
through a calculation in a formula or in an assignment rule.

1

When the value of an attribute can be obtained by means of a calculation,
we usually define it as a formula in the transaction structure.
Note, however, that we could also assign the calculation to the attribute by
means of a rule.

What considerations should we take into account when deciding whether
to assign the calculation by means of a rule or by defining the attribute as
a formula? We have already seen that if the attribute is a formula, GeneXus
does not create in its associated table (i.e. the table to which the formula
attribute would belong if it were stored), a field to store the value, since it
understands that its value can be obtained from the calculation. For this

present in the transaction structure, but not in the associated table.

attribute.

On the other hand, if the attribute value is assigned by a rule, it will still be
present in the table simply by assigning a value to it, so it does not
become a virtual attribute, but remains a stored attribute.

2

So is it better to use an assignment rule than a formula? No, not
necessarily because it depends on how the attribute will be used.

If the attribute is to be used in other objects and we need to make sure
that its value is the actual result of the calculation, then we define it as a
formula. As this definition is global to the knowledge base, when any
object queries the attribute value, it accesses its calculation and it is
triggered, updating the value on the fly.

3

If the attribute value is updated only by the transaction, then its value can
be assigned locally, with a rule. The attribute is still stored and its value can
also be changed through the form.

4

However, the fact that the attribute must be calculated every time is not always an
advantage.

If the calculation has to be performed on many records each time and has to be
done frequently, it may affect the application performance, in contexts where real-
time feedback is required.

It can also be the case when the formula attribute is calculated from other formula
attributes, so that a large number of calculations must be performed to obtain the
value.

Suppose, for example, that we are calculating the total purchases of a customer of
the travel agency, as the sum of the invoices made to the customer; the total of
each invoice is calculated as the sum of his/her trips and in turn the cost of each
trip is calculated by a procedure that takes into account the number of attractions
visited, the cost of air tickets, the cost of accommodation, etc.
To list the total purchases of all the agency's clients in the last 5 years, it will
probably be necessary to run through many records and perform many
calculations, which may affect the response time of the system to obtain the result.

In this situation, it would be good to store the result of the customer's total
purchases in a table, so that if something changes that affects the result, it is
recalculated again and the new result is stored, but if nothing changes, the stored
value can be used instead of always performing the calculation.
We do this by defining the formula attribute as redundant, i.e., although its value
can be obtained by a calculation, the result of the calculation will be stored in the
database and the value will be retrieved from there in the future.

Also for similar reasons, we can define an inferred attribute as redundant.

5

The definition of redundant attributes will be discussed later in another video.

5

We have seen that we can define an attribute as a formula or assign its
value with a rule, but we must also consider how its update mechanism
will be in each case.

Remember the use of the Add (or Subtract) rule, which allowed us to keep
the value of an attribute of the extended table up to date, performing the
appropriate operation depending on whether we were inserting, deleting
or modifying a record.

The attribute of the CustomerTotalMiles example, updated by the Add
rule, is a stored attribute and therefore the value is immediately retrieved.
However, because the Add rule is local to the Customer transaction, as we
saw before, only the CustomerTotalMiles attribute will be updated if the
Customer transaction screen or a business component of the transaction
are executed.

If we want the value of the customer's total miles attribute to always be
kept up to date, we should define it as a formula, in this case a Sum
formula that adds the miles of each trip to the customer's total miles.

Although defining the attribute as a formula ensures that it is continuously
updated, we lose the possibility of it being stored, and in order to obtain
its value we may cause the performance problems mentioned above. To
solve this, we could define the CustomerTotalMiles formula attribute as
redundant and it will become a stored attribute. But when is the attribute
value updated in the table?

6

When we define a formula attribute as redundant, GeneXus automatically
creates procedures in charge of updating its value and storing it in the
database.

In the example we saw, when through the Customer transaction (or its
Business Component) a customer trip is inserted or deleted or the value of
the CustomerTripMiles is affected, the Sum formula is recalculated and
the new value is stored in the Customer table.

When the value of some of the attributes that are part of the calculation of
a redundant attribute is modified from the form of a transaction or from a
Business Component, GeneXus triggers the procedure that updates its
value.

Therefore, from the point of view of the update and that the attribute is
stored, updating the attribute by means of an ADD rule and defining it as a
redundant formula are equivalent solutions.

7

Even through from the point of view of updating and being stored, using
an add rule or defining a formula attribute as redundant are equivalent
solutions, there are several differences to consider between using one
way or the other.

and cons in each case.

Advantages:

• The attribute assigned by the Add rule is always stored, so its value is
immediately retrieved.

• The attribute can still be edited in the transaction's form
• The attribute is updated each time the rule is triggered; i.e. when a

record is inserted, modified or deleted from the transaction where the
rule was defined, either through its form or through Business
Components

• The Add rule knows the operation to be performed depending on the
state of the transaction; i.e. it knows if it has to add when a record is
inserted, subtract if it is deleted or modify when an update is
performed

• The update takes a very short time, since only tables belonging to the
extended table are accessed.

Disadvantages:

8

• The Add rule is not triggered when a table record is inserted, modified or deleted through
a procedure object, so in this case the attribute value is not updated

• It is not possible to force the rule to be triggered on demand, so it is not possible to force
the attribute to be updated.

8

attribute as redundant.

Advantages:

• The attribute defined as a redundant global formula is always stored
• It is updated when any attribute that is part of the calculation is

modified, or when a record of the transaction where the formula
attribute was defined is inserted, modified or deleted, either through
the form or with Business Components

• Redundancy procedures know the operation to be performed to keep
the attribute up to date; i.e. they know whether they have to add,
subtract or how to modify the value

• It is possible to force the triggering of the redundancy update on
demand by means of special procedures that GeneXus creates when
we define an attribute as redundant.

Disadvantages:

• The attribute is read-only in the form of the transaction where it was
defined. Even though with redundancy it is stored, we cannot edit it.

• The redundancy update takes a long time, as it involves running several
procedures and usually accessing several tables

• When a formula attribute is defined as redundant, the size of the KB is
increased due to the addition of the procedures created to maintain
redundancy

• If anything in the formula definition changes, GeneXus must keep the

9

redundancy procedures up to date.

9

Therefore, as we said before, we must consider what is better, whether to
update the value of the attribute by means of a rule or by defining it as a
redundant formula, depending on the considerations we have just seen
and how we will use the attribute.

In the following videos we will study the different types of formulas that
we can define.

10

11

