Formula vs. Assignment Rule

GeneXus

Next, we will take a closer look at some of the concepts of the formulas.
Let's start by looking at the difference between defining an attribute
through a calculation in a formula or in an assignment rule.

Considerations when defining an attribute based on ¢
calculation: rule or formula?

@ swPege X TF Fugnt X
Structure *

Name Type

Formula Nullable

count(FlightSeatlLocation)

Frice

Percentage

s
Vs.
B FightFinalPrice Price Fight Final Price

a FightCapacty Numeric(4.0) Flght Capacity

@ stetPage X G Fiight* X

Rules * |
parm(in:&ode, in:&FlightId);

62 FlightCapacity = count(FlightSeatLocation);

When the value of an attribute can be obtained by means of a calculation,
we usually define it as a formula in the transaction structure.

Note, however, that we could also assign the calculation to the attribute by
means of a rule.

What considerations should we take into account when deciding whether
to assign the calculation by means of a rule or by defining the attribute as
a formula? We have already seen that if the attribute is a formula, GeneXus
does not create in its associated table (i.e. the table to which the formula
attribute would belong if it were stored), a field to store the value, since it
understands that its value can be obtained from the calculation. For this
reason, we say that we consider the attribute as “virtual” since it is still
present in the transaction structure, but not in the associated table.

We can see that in the definition of the table it appears as a “logical”
attribute.

On the other hand, if the attribute value is assigned by a rule, it will still be
present in the table simply by assigning a value to it, so it does not
become a virtual attribute, but remains a stored attribute.

= Titles
Flight capacity report
Flioht Id Departure Gitv Arrival citv......_. Canacitv
gt
i Fiig FlightDepartureCityNsme FlightAmvaliCityNeme FlightCapacity
T Fnght

§ Fightid : g
S FightDepartureArportid Flight capacity report
Sy FiightDepartureAirportName
S¢ FiightDepartureCountryld F A . ¢ "
$¢ FightDepartureCountryName light Id Departure city rival city apacity
S¢ FiightDepartureCityld
Sy FiightDepartureCityName 1 New York Beijing 12

S FlightArmvalAirportid
S¢ FlightArrvalAirportName
Sy FiightArrivalCountryid 2 Sao Paulo Paris 8
S¢ FlightArmvalCountryhiame
S¢ FlightArrvaiCityld
Sy FlightArrvalCityName 3 New York Sao Paulo 6
* FiightPrice
* FiightDiscountPercentage 4 Pars Bac Pauks 8
A Ardineld
¥ AirineName
¥_AjrlineDiscountPercentace
PAY FlightCapacity Numeric(4.0) Flight Capacity !
T Pinganapenny
Seat
¥ Fightseatid
9 Fightseatchar
(P Fightseatiocation

So is it better to use an assignment rule than a formula? No, not
necessarily because it depends on how the attribute will be used.

If the attribute is to be used in other objects and we need to make sure
that its value is the actual result of the calculation, then we define it as a
formula. As this definition is global to the knowledge base, when any
object queries the attribute value, it accesses its calculation and it is
triggered, updating the value on the fly.

Discount Percentage

@ statPage X Q1 Flignt® X

[Airline Id
Rules *
4o parm(in:&Mode, in:&FlightId);
- Airline Name American Airliines
FlightCapacity = count(FlightSeatLocation);
Airline Discount Percentage 20
TU Fiight

¥ Fightid Final Price 2400.00
Sa FhghtDepartureAirportid
Sy FiightDepartureAirportiiame
Sy Fly
S FightDepertureCountryld Capacity i
' FlightDepartureCountryName
Sy FlightDepartureCityld
S¢ FlightDepartureCityhiame
Sa FlightArrvalAirportid Seat
Sy Flightarrvalairporthame
Sy FlightArrivalCountryld Seatid Seat Char Seat Location
Sy FlightArrvalCountrylame
Sy FlightArrivalCityld X 1A Window v
Sy FlightArrivalCityName
* FlightPrice % 1B Middle
* FlightDiscountPercentage
A airineld v 1c v
¥ AirlineName
¥ ArlineDiscountPercentage e 1D Aisle ~
&, FiightFinalPrice
* FlightCapacity v 1E -

Seat

-
P Fightseatis X 1F v

¥ Fighseatchar
¥’ FlightSeatLocation

If the attribute value is updated only by the transaction, then its value can
be assigned locally, with a rule. The attribute is still stored and its value can
also be changed through the form.

Considerations when defining an attribute based on a calculation

Name Type Description Formula
- '_i; Customer Customer Customer

? Customerld Numeric(4.0) Customer Id

p CustomerName Character(20) Customer Name

® CustomerLastName Character(20) Customer Last Name

® CustomerAddress Address, GeneXus Customer Address

® CustomerPhone Phone, GeneXus Customer Phone

® CustomerEmail Email, GeneXus Customer Email

B

©

CustomerAddedDate Date Customer Added Date
CustomerTotalPurchases Numeric(4.0) Customer Total Purchases Sum(InvoiceTotal)] - Redundant

InvoiceTotal = sum(InvoiceLineTotal)

InvoiceLineTotal = TripCost(Customerld)

v" Number of tourist attractions visited
v' Air ticket costs
v" Accommodation costs

However, the fact that the attribute must be calculated every time is not always an
advantage.

If the calculation has to be performed on many records each time and has to be
done frequently, it may affect the application performance, in contexts where real-
time feedback is required.

It can also be the case when the formula attribute is calculated from other formula
attributes, so that a large number of calculations must be performed to obtain the
value.

Suppose, for example, that we are calculating the total purchases of a customer of
the travel agency, as the sum of the invoices made to the customer; the total of
each invoice is calculated as the sum of his/her trips and in turn the cost of each
trip is calculated by a procedure that takes into account the number of attractions
visited, the cost of air tickets, the cost of accommodation, etc.

To list the total purchases of all the agency's clients in the last 5 years, it will
probably be necessary to run through many records and perform many
calculations, which may affect the response time of the system to obtain the result.

In this situation, it would be good to store the result of the customer's total
purchases in a table, so that if something changes that affects the result, it is
recalculated again and the new result is stored, but if nothing changes, the stored
value can be used instead of always performing the calculation.

We do this by defining the formula attribute as redundant, i.e., although its value
can be obtained by a calculation, the result of the calculation will be stored in the
database and the value will be retrieved from there in the future.

Also for similar reasons, we can define an inferred attribute as redundant.

The definition of redundant attributes will be discussed later in another video.

Updating an attribute by means of a formula or a rule

T3 customer

¥ Customerid
Y’ CustomerName
® CustomerLastName
Aaced Date ¢ CustomerAddress
¢ CustomerPhone
o e o CustomerEmail Sum(CustomerTripMiles) + REDUNDANT
* CustomerAddedDate
Trip * CustomerTotalMies
Pk Trip Date Country kd Country Name City i City Name o Mies ;"9
{ Tripld
¥ TripDate
e ¥ Countryld
¥ CountryName
¥ COtyld
v CtyN: A ~ ~
S Add(CustomerTripMiles, CustomerTotalMiles);
y’ CustomerTripMiles

Add(CustomerTripMiles, CustomerTotalMiles) | + Ifanew trip is entered for the Customer

« If a trip is deleted for the Customer

« If a trip is changed for a Customer u

diff

We have seen that we can define an attribute as a formula or assign its
value with a rule, but we must also consider how its update mechanism
will be in each case.

Remember the use of the Add (or Subtract) rule, which allowed us to keep
the value of an attribute of the extended table up to date, performing the
appropriate operation depending on whether we were inserting, deleting
or modifying a record.

The attribute of the CustomerTotalMiles example, updated by the Add
rule, is a stored attribute and therefore the value is immediately retrieved.
However, because the Add rule is local to the Customer transaction, as we
saw before, only the CustomerTotalMiles attribute will be updated if the
Customer transaction screen or a business component of the transaction
are executed.

If we want the value of the customer's total miles attribute to always be
kept up to date, we should define it as a formula, in this case a Sum
formula that adds the miles of each trip to the customer's total miles.

Although defining the attribute as a formula ensures that it is continuously
updated, we lose the possibility of it being stored, and in order to obtain
its value we may cause the performance problems mentioned above. To
solve this, we could define the CustomerTotalMiles formula attribute as
redundant and it will become a stored attribute. But when is the attribute
value updated in the table?

Updating an attribute by means of a formula or a rule (continued)

When we define a formula attribute as redundant, GeneXus automatically
creates procedures in charge of updating its value and storing it in the
database.

In the example we saw, when through the Customer transaction (or its
Business Component) a customer trip is inserted or deleted or the value of
the CustomerTripMiles is affected, the Sum formula is recalculated and
the new value is stored in the Customer table.

When the value of some of the attributes that are part of the calculation of
a redundant attribute is modified from the form of a transaction or from a
Business Component, GeneXus triggers the procedure that updates its
value.

Therefore, from the point of view of the update and that the attribute is
stored, updating the attribute by means of an ADD rule and defining it as a
redundant formula are equivalent solutions.

Comparison between the use of an Add rule and a redundant formula

Advantages of the Add rule Disadvantages of the Add rule

The attribute assigned by the rule is always stored The Add rule is not triggered when a table record
is inserted, modified or deleted through a
procedure object

The attribute can be edited in the form of the It is not possible to force the rule to be triggered
transaction on demand, so it is not possible to force the
attribute to be updated

The attribute is updated only when a record is
inserted, modified or deleted from the transaction
where the rule is defined, through the form or with
BC

The Add rule knows the operation to be
performed depending on the state of the
transaction (insert, update or delete)

The update takes a very short time; the extended
table is accessed

Even through from the point of view of updating and being stored, using
an add rule or defining a formula attribute as redundant are equivalent
solutions, there are several differences to consider between using one
way or the other.

Now let's look at some comparative tables to help us consider the pros
and cons in each case.

First, let's analyze the advantages and disadvantages of using an Add rule.

Advantages:
* The attribute assigned by the Add rule is always stored, so its value is
immediately retrieved.

* The attribute can still be edited in the transaction's form

The attribute is updated each time the rule is triggered; i.e. when a
record is inserted, modified or deleted from the transaction where the
rule was defined, either through its form or through Business
Components

The Add rule knows the operation to be performed depending on the
state of the transaction; i.e. it knows if it has to add when a record is
inserted, subtract if it is deleted or modify when an update is
performed

The update takes a very short time, since only tables belonging to the
extended table are accessed.

Disadvantages:

The Add rule is not triggered when a table record is inserted, modified or deleted through
a procedure obiject, so in this case the attribute value is not updated

It is not possible to force the rule to be triggered on demand, so it is not possible to force
the attribute to be updated.

Comparison between the use of an Add rule and a redundant formula

Advantages of the redundant formula Disadvantages of the redundant formula

The redundant global formula attribute is always The attribute is read-only in the form
stored

The attribute is updated when an attribute of the The update takes a long time, since it involves
calculationis modified, or when a record is executing several procedures and accessing
inserted, modified or deleted from the transaction several tables

where it was defined, through the form or with BC

Redundancy procedures know the operationto be The KB size is increased due to the addition of the

performed to keep the attribute up to date procedure objects created to maintain redundancy
It is possible to force the triggering of the If anything changes in the formula definition,
redundancy update on demand by means of a GeneXus must update the redundancy

special procedure procedures

Now let's look at the advantages and disadvantages of defining a formula
attribute as redundant.

Advantages:

* The attribute defined as a redundant global formula is always stored

» Itis updated when any attribute that is part of the calculation is
modified, or when a record of the transaction where the formula
attribute was defined is inserted, modified or deleted, either through
the form or with Business Components

* Redundancy procedures know the operation to be performed to keep
the attribute up to date; i.e. they know whether they have to add,
subtract or how to modify the value

» Itis possible to force the triggering of the redundancy update on
demand by means of special procedures that GeneXus creates when
we define an attribute as redundant.

Disadvantages:

* The attribute is read-only in the form of the transaction where it was

defined. Even though with redundancy it is stored, we cannot edit it.

+ The redundancy update takes a long time, as it involves running several
procedures and usually accessing several tables

* When a formula attribute is defined as redundant, the size of the KB is
increased due to the addition of the procedures created to maintain
redundancy

+ If anything in the formula definition changes, GeneXus must keep the

redundancy procedures up to date.

Start Page X g Flight* X
@ L)
\Rules"il

4oparm(in:&ode, in:&FlightId);

62 FlightCapacity = count(FlightSeatLocation);

@© swtPege X TF Fign X

\/ S. Structure *

Name Type Description Formula Nulable

Flight Flght

to

Formula Editor

count(FlightSeatlLocation)

~ FlightAr

+ REDUNDANT

FightArrnalCityName

. Fighrrce s
o ApOenstuwntog Parcnage ok][concn

] e X ves

Home Arline Name
scountPercentage Percentage Arline Discount Percentage
B Fughtsinalrice price Faght Final Price FightPrice * (1-A)
a FlightCapacty Numeri(4.0) Flight Capacty count(FightSeatiocabion
Seat Seat Seat

Therefore, as we said before, we must consider what is better, whether to
update the value of the attribute by means of a rule or by defining it as a
redundant formula, depending on the considerations we have just seen
and how we will use the attribute.

In the following videos we will study the different types of formulas that
we can define.

10

GeneXus

training.genexus.com
wiki.genexus.com

training.genexus.com/certifications

1

