
………..……………………………………………………

For each command in depth

Where are queries resolved?

We want to review and dive deeper into the logic of database access, and to do so
it will be convenient to clarify some aspects that haven't been mentioned so far.

1

………..……………………………………………………

CLIENTSERVER

CLIENT

CLIENT

CLIENT

CLIENT

CLIENT

CLIENT
CLIENT

For example, we have talked about client and server on many occasions, but what
we mean by these terms will depend on the context and will need to be clarified.
They are related terms: if there is a server, then there are clients that it serves.

2

………..……………………………………………………

"SELECT [CountryName], [CountryId] FROM
[Country]
WHERE [CountryName] > @country ORDER
BY [CountryId]"

CLIENT SERVER

CLIENT SERVER

ListCountries(&country)

Web panel

Procedure

for each Country
where CountryName > &country
print countryInfo

endfor

“France”

“France ”

“United States”

“Franc3”

To make it clearer: let's think of an application developed for a web environment
which has a Web panel that calls a procedure to list the countries in the database.

The program that commands the Web panel is executed on the application server,
although it is invoked from the client, through the browser. When the user enters
a value in the field and clicks the button, the web panel part on the client activates
the program on the server that executes the event code, invoking the procedure,
which is also served by that application server.
The procedure must run the For each. This means that it must, in turn, call the
DBMS so that the DBMS makes the required query to the country table. The DBMS
is located on another server—the database server (however, both the application
server and the database server may occasionally be located on the same machine).

When the procedure is generated, a SQL statement is built. Then, when the
procedure is executed, it is sent to the DBMS on the database server, for the
DBMS to resolve it—of course, assuming that we are using a DBMS that
understands SQL.

From this perspective, we have the database server, and the client of this query is
the procedure, on the application server.

Making this distinction may seem unnecessary at first glance, but we will see that
it is not so when things become more complex.

In a simplified way, let's think of it like this: in the example we are asking to run
through the Country table, filtering by CountryName (let's assume that in the

3

………..……………………………………………………

printblock we only show the value of that attribute). It is very different to send the query as a Select to
the DBMS, which makes the query and returns the result to the client already filtered and sorted, than
to send it in a way in which the DBMS returns all the countries and the filter by CountryName has to
be done in the client, for example. The amount of information that travels from the database server to
the client can be overwhelming.

Here it is obvious that, from the For each of the procedure, the GeneXus specifier will create a source
with that select containing a where, to be executed by the DBMS resolving the query in a single
operation... but this will not always be the case.

For example, if we don't want the countries whose name is greater than a string, but those whose
names satisfy a regular expression (for example, that it can only be a word, consisting of letters from
“a” to “z,” uppercase or lowercase, but without anything else; that is, “France” satisfies this pattern, or
even “France” followed by blanks, but not “United States,” because after the first space comes
another word. And certainly not “Franc3,” because it contains a digit)... well, if we wanted this, then,
we would have to program the Source like this:

3

………..……………………………………………………

"SELECT [CountryName], [CountryId] FROM
[Country]
WHERE …
ORDER BY [CountryId]"

ListCountries()

Web panel

Procedure

&pattern = "^[a-zA-Z]+\s*$"
for each Country

where CountryName.IsMatch(&pattern)
print countryInfo

endfor

“France”

“France ”

“United States”

“Franc3”

CLIENT SERVER

CLIENT SERVER

...where in the variable of character type we establish the regular expression. We
will not study them here, but with this syntax we are indicating that it must begin
with a letter between lowercase “a” and lowercase “z,” or between uppercase “A”
and uppercase “Z,” and that it will be a repetition of characters of these classes.
Also, it can have a zero or more blank consecutive spaces and end. In other words,
it cannot consist of several words, nor of words with characters other than these.

With this regular expression, we can always apply the IsMatch method to an
attribute or variable to know if its content matches this pattern or not. For
example, if in the CountryName attribute we have France, or France with spaces, it
will match. However, “United States” will not match, and neither will this other
one.

So here we want to list only the countries whose name consists of a single word.

We might think that in the Select that we sent to the DBMS there will be a WHERE
as it existed in the other case, so that the DBMS filters the Country records
according to that IsMatch method. However, if the DBMS is SQL Server, it will not
understand that method. It doesn't exist in its language. GeneXus knows this, so
the Select statement that it sends to the database Server will have to be WITHOUT
the where. And the generated source will be the one that performs the filter with
all the countries returned by the query (all the countries in the table). That is to
say, the filter will be performed in the client, which is the one that can execute the
IsMatch method.

In SQL Server there are very few methods that cannot be resolved by the DBMS.

4

………..……………………………………………………

This is one of them. The functions and methods that can and cannot be resolved will depend on the
DBMS used. Interestingly, we don't need to know this beforehand as the navigation list will warn us.

4

………..……………………………………………………

for each Country
where CountryName > &country
print countryInfo

endfor

&pattern = "^[a-zA-Z]+\s*$"
for each Country

where CountryName.IsMatch(&pattern)
print countryInfo

endfor

Thus, if we compare the navigation list of the first case with the second one, we
see that the second one shows a warning indicating that the filter cannot be
applied in the database server, but in its client—that is, in the program
corresponding to the procedure, and that it could lead to poor performance.

Consider an extreme case where there is only one country that satisfies the filter,
but there are millions of records in the country table. Those millions would travel
from the DBMS to the procedure, and also the procedure would have to run
through them all, one by one, to finally keep the record to display in the output.

In that case, we might want to improve things by looking for some strategy to
reduce that impact.

5

………..……………………………………………………

"SELECT [CountryName], [CountryId] FROM
[Country]
WHERE …
ORDER BY [CountryId]"

ListCountries()

Web panel

Procedure

&pattern = "^[a-zA-Z]+\s*$"
for each Country

where CountryName.IsMatch(&pattern)
print countryInfo

endfor

CLIENT SERVER

CLIENT SERVER

With these examples we wanted to show that, on one hand, we have the
application server whose client is the browser on the end user's physical device
and, on the other hand, we have the database server whose client is the
application running on the application server. The way we program the database
accesses will have an impact on performance.

GeneXus developers write a For each in the Source, and then, knowing the
environment for which the application will be built, the GeneXus specifier will
determine how the source should be built. There it makes decisions that depend
on the programming platform, but also on the DBMS with which it will connect.

If we are curious, we can always inspect the source and see the SQL statement.

6

………..……………………………………………………

For example, here we have the first proposal... We ask it to build the source
program... we look for it in the environment directory (which is .Net against SQL
Server), we open it... and look for the select... here we see it. There is the
complete query.

7

………..……………………………………………………

Instead, if we modify the source for the second proposal and do the same... we
see that the select doesn’t include the where... which means that the filter is being
resolved inside this source.

8

………..……………………………………………………

And now, for example, if we change the base table of the For each to Attraction,
so that it prints all the names of the attractions’ countries (of course they will be
repeated if several have the same country)...

In the navigation list, we can see that as the table run through will be Attraction,
then it will have to access the Country table to obtain each attraction's country,
and thus be able to print the value of the CountryName for that attraction.
This operation in relational databases is called a Join. That's why the Join location
is indicated, which shows where the Join is performed, whether in the database
server or in the client. Here it tells us that it is on the server, so if we look for the
generated source, we will see that the entire select is sent to the database so that
the Join is resolved there. That is much less costly than if it had to be resolved by
the client, that is, this procedure.

9

………..……………………………………………………

With all this in mind, we will review the syntax of the For each command and what
everything is used for, in order to incorporate what we already know and go a little
further.

skip expression1 count expression2

order att1, att2, … , attn [when condition]

order att1, att2, … , attn [when condition]

order none

unique att1, att2, … , attn

using DataSelector (parm1, parm2, … , parmn)

where condition [when condition]

where condition [when condition]

where att IN DataSelector (parm1, parm2, … , parmn)

blocking n

main_code

when duplicate

when_duplicate_code

when none

when_none_code

BaseTrn1 , … , BaseTrnnFor each

endfor

