

In the previous video, we didn't take the font size tokens to GeneXus.

We are going to do it only with the Desktop tokens. This means that we will not add the
breakpoint option to the set of tokens, as we had seen a couple of videos ago, do you
remember? Please bear with me a little bit and you will understand why.

If we don't really know the syntax to add tokens for fontSizes, it is convenient to add the first
one from the graphical editor. In this way...

And there we can give it the name we want... and the value.

Then, from the final result of the analysis that we had made in the previous video and that was
expressed in this spreadsheet, we can enter these tokens. As I said, I will only use the values
for Desktop in this DSO.

Here I copied them all, placing regions, as before, for organization purposes. We can see, in
the graphical editor, the information represented like this.

Next, we should take the opportunity to change, in the classes we have already defined, all the
font-size properties so that they now use the appropriate font size token.

In this way, if we look in our spreadsheet, in the tab where we had the text classes, the token
for h2... it was named L.

So here we type the dollar sign to refer to a token, of type fontSizes and name L.

Then we look for the token for the paragraph class... it is the one named S.

So we replace it with... fontSizes S.

And all that's left is the button class... which will be XS.

Remember that we only have these three classes because, for learning purposes, we had
already been working on them in the previous module, in great detail, so that you could get a
feel of all this and understand what it's all about.

But when we already know all that and we have to start working on a project, in general we do
what we have been doing in this module: enter the assets first, that is, the resources (images,
fonts... and in this case also include them in the DSO with the font-face rules); everything we
have been doing at the beginning of this module...

...set up the color system, font size system. And also spacing, radii, borders (we will not do it
here, so as not to make it boring, because it is the same type of analysis that we have already
done for colors and font sizes). We would add, then, also those tokens to use them in the
corresponding properties...

And after all that, we would enter all these text classes that we have already identified (not
only the 3 that we have already entered but all of them) so that when we start working on the
objects individually, we don't have to dwell on more obvious things, like these, and we can
focus on the actual problem. We will do it in the next video.

Now to finish this video I just want to mention, so that this is not a mystery, why I didn't add a
breakpoint option to vary the tokens by screen size.

This one that I'm going to use is a possible option among several. It is not the only one.
I will think of the different screen sizes as different versions of the same concept: the Design
System for the application.

Do you remember that in a class very early on where we had analyzed all the players, we had
separated things like this? Here are all the objects that were going to implement the User
Interface... and here is the Design System object.

Well, it turns out that all these objects with a layout will be able to define different versions of
the layout according to the platform...

Take the Home panel, for example. At the moment it only has one layout defined, which is
valid for all platforms in all orientations. We could add other, specific layouts to it.

For example, to differentiate by platform: Web, Android or Apple.

I choose Web, and I can also specify if it is Web for any type of device, or for Phone or Tablet.

Or, for example, I can add a new layout that is valid for any platform (native or web) but for
Phone or Tablet size. And here choose if it will be Phone or Tablet (7 or 10 inches)... and so
on.

For example, if I choose Phone and I want to initialize the layout with this one, which is the
only one we have so far...

...I click here.

And there we see that now we have two layouts... this one is a specialization of this other one.
And then I can handle this one separately from the other one.

For example…

If I then run this panel in my Angular web application on a phone, it will use this layout because
from the two that exist, it is the one that is closest to the device and execution platform.

When running the application on that same phone but this time the native application, Android
or Apple, it will also use this layout.

On the other hand, if I run the application on any other device and platform, it will use this
other one, which is the most general. So, if I run the Angular web application for desktop size,
this will be the layout.

In fact, for Phone size we will have to redesign almost the entire layout because its structure
will be quite different.

We will come back to this topic of layouts at the end of the course. I don't want to focus on
that now. But I do want to focus on the styles of the elements...

For example, both layouts will share this text, which corresponds to the same typography
style... h2.

But what about the font-size property of that class? We can set it to correspond to the
$fontSizes.L token; yes, perfect. But it shouldn't have the same size for the Desktop
application as for the one running on the phone. In one case it should be 67 pixels and in the
other it should be 20 pixels.

One way to achieve this is to also think about DSO versions.

For example, leave the DSO for Desktop with the name TravelAgency, and save that one as
TravelAgencyTablet.

And another one with the name TravelAgencyPhone.

And to each one change the values of the tokens that vary by screen size. In this case, we
would assign them the values of this column... note that I don't specify the ones that are not
used for this size...

And in this other case I place the values of the Phone column of the spreadsheet.

Where do I indicate which DSO to use in each case?

In the platforms...

If for Phone and Tablet sizes I will not distinguish between web and native applications, then I
can specify it at the Any level... For Any Platform I specify as Style that of the TravelAgency
DSO, while for Any Phone I set TravelAgencyPhone and for Any Tablet of 7 the
TravelAgencyTablet, and the same for the one of 10.

Having done this at the Any level then impacts the specific platforms. Note that now the value
for Any Android will be the same as that of Any Platform... and for Android Phone? That of Any
Phone. We will not be surprised to see for Android Tablet 7 and Android Tablet 10 the DSO
that we specified for Any Tablet 7 and 10.

Let's see Any Apple...
iPad…

Well, let's move on to the web... why isn't it being applied here? Why is TravelAgency always
there? I don't know if you remember, we had changed the default value, the one inherited from
Any Platform, at the beginning of the course. That default value, the one inherited from Any
Platform, corresponded to Unanimo.

And we changed here (we had changed) to our TravelAgency, that's why it's in bold! And what
happens from there is that all these other ones inherit the value of that one.

So here we would have to change for this one....

...and here for this other one.

With this configuration, if we think about what will happen when we run our Home panel on a
phone... the layout that will be chosen, of the two that exist, will be this one. It doesn't matter if
the application is the native one or the web one; in either case, as there are no more specific
options, this will be the layout...

And the DSO that it will use? If the application is a web application, it will be this one...
If the application is for Android... this, that is to say, the same one...

So, what style will this text have? The one specified by the h2 class... of the corresponding
DSO, this one...

Then the font size of that text will be the one indicated by this token... which in this DSO is
worth... 20 pixels.

On the other hand, if we were running the web application in the browser of a laptop, this will
be the selected layout, whose style will correspond to the one of this DSO...

This text will then be styled according to this class, which in this DSO has this definition,
identical for the moment to the other one. The only thing that varies is the value of this token,
which here will be 67 pixels.

You may be thinking that if so many things are identical between the 3 DSOs and only a few
vary....

... wouldn't it be better to reuse what is identical and specialize only in what is different? The
answer to that is always YES.

Since thinking about all the variations at the same time is a bit overwhelming, in general we
work on one of the versions, which in this case is the Desktop, and only after we finish we
work with the others.

With the current state of things, I would think that the default will be our TravelAgency DSO,
which is the one we have been working on and which contains all the definitions, and then in
the Tablet and Phone DSO I would import everything from the default DSO and then specialize
what is different.

That is, I would do this...

Remove from here all the tokens that are already identical in TravelAgency...

Delete all the identical definitions in the Styles tab, but import everything from the DSO that is
in the TravelAgency module, DesignSystems submodule, and is called TravelAgency (both the
Tokens and Styles tabs: I'm importing all this from TravelAgency).

Everything is imported, and these tokens are overwritten.

And we would do the same for the other DSO.

You may wonder why I got into this if I said that we start with one of the variations…

...and only later we develop the others. While this is true in general...

...previewing how we are going to implement these variations allows us to make early
decisions that will make the system easier to maintain later on.

In the next videos, we will focus on Desktop web development and we will come back to all
this at the end, when we deal with the other versions.

In fact, I don't think this is exactly the organization I'll end up choosing....

...instead I'm going to place the Design System for each variation in a different module. That
way I will be able to call them the same (the modules allow just that, that there are objects
among them with the same name), and each module, conceptually, will implement the same,
the TravelAgency design system, but each one for a different universe. One for desktop, one
for Phone, one for Tablet. Of course one will be the model of the others, that is, they will not be
completely independent.

But we are not going to think about this now. I’ll simply leave an outline to analyze and solve it
later, when we deal with these other variations. We will continue in the next video.

