

We had ended the previous video with the following question, which I'm going to take up now.

Should we use tokens for font sizes in our system?

Remember that the spreadsheet we were initially working on was sent to me by Chechu, our
designer, with a tab, Text Styles, where she listed the fonts she used for each font style.

Well, I copied this table into a new tab, which I called Text Classes, where I mapped her
typographic styles with the classes that I will define in GeneXus (following the BEM naming
convention). I have already named the regions, and written the font tokens and their weight
(remember that we did this when we created the 3 tokens for the fonts?) Also, I've already
associated the color tokens with them according to our system. Doing this will make it very
easy to specify in our DSO the classes and their properties, which we still have to complete.
We have only a few, these ones.

Note that I've left in green color what comes from Figma and in pink color what will be valid for
GeneXus.

But what about the font sizes? Going through the Size column, I marked in black the sizes that
are repeated, at least once, and copied in this other one all the values, from largest to smallest,
without any repetition, but highlighting in bold the ones that are used more than once. There is
no noticeable regularity, is there?

Here we would have to make a similar analysis to the one we did for the colors, but this time
thinking about the "font size" system instead of the "colors" system.

The H1 function, which is the main Header text, is used both at a general level for the screen
as a whole, and in specific components such as the card-home, the banner, the card-
attraction. We could associate them with a token name for the size that is XL, in the 4 cases,
taking the default as the first one, and since it is not the same for the components,
specializing it there. So here we would have the card__XL, which is the same as for Card
Attraction. And here we would have the banner__XL.

And for the H2 function we could think of an L token, large, which is also specialized.

And then we could associate an M token with the Copyright, which is the next in size, and S
with the Paragraph one. The XS one is assigned to the font size of the button.

We could complete here with M all those with this value 20, but be careful. These tokens will
vary by screen size. So we should see them at work for the other two sizes before deciding.

Chechu completed the modeling of the project by also adding the application design for Tablet
and Phone sizes. She did it in another file, this one. Here we see all the pages modeled for
Tablet.

And here they are all modeled for Phone.

What we would have to do, then, if Chechu hadn't already indicated it in the spreadsheet, is to
extract the font size values for each screen size.

So, for example, for Desktop size the font size of the H1 typographic style was 100.
Meanwhile, for Tablet size it is 60 pixels, and for Phone, it is 40 pixels.

To work in a more orderly way, we could add a column for each breakpoint and place the
equivalences there.

As I did with H1, I look for the sizes of H2. For paragraph... For Button the values will be the
same...

Next, note that while for Desktop we have banner and footer, for Tablet and Phone we don't.
So there will be no values for the style of the Copyright text, nor for the banner.

Well, these other values are easily completed, but what about the H2 of the card-home? As we
can see, it doesn't exist; that typographic style is not used for Tablet nor for Phone.

And what about the H1 of the Card Attraction that for Desktop we had seen that it matched
the H1 of the Card Home, which is why initially we assigned the same token, card_XL?

Well, no, obviously I was wrong, because let's see that for Desktop size, while for the card in
Home it is 42, for the card in Attractions it is 36, and in Attraction also 36. So I would need one
more XL token, but this time from card-attractions or attraction component, it is the same.

However, it is not enough either. For Desktop size the Attraction card only varies in card size
(we have two sizes), not in terms of internal texts... and also H1 matches exactly that of
Attraction... let's see what happens in Tablet.

Well, let's not panic. Here's the thing, we see that Attractions cards also have different text
sizes. That is, we have two sizes for H1. This one, 36, and this one, 20!

And if we look at Phone, they also vary. This one is 20 and this one is 12.

So we have a Big version, for the larger titles, with these values: 36 for Desktop, 36 for Tablet
and 20 for Phone... And a Small version, for the smaller ones, with these values: the same for
Desktop, but 20 for Tablet and 12 for Phone.

But I will also need another version, this time for the cards in the Attraction panel, that if for
Desktop size was the same, for Tablet size....

… and Phone it is not.

I name it card-attraction, because it will be from the Attraction panel, assign it the values I

identified before, and rename these two to indicate that they are from the Attractions panel.

We would have to do the same for location and rating. Looking at the Desktop version we can
think that the rating, which is exactly the same size in the Attractions and Attraction cards, is
of size M, which here would be 38 pixels. As for location, on the other hand, as it is smaller, we
could say that it is an S, which here would be 14 pixels.

So, I call this one card-attractions__S, 14 for Desktop.

And this other one, which is not 41, at least not in this new file from Chechu (maybe in some of
the versions that she sent me before, the ones that didn't have all the screen sizes, she had
used this other 41 size and then she adjusted them; probably something like that happened).
This one, which here is 38, I'll call it card-attractions__M.

Well, here it is the same as for H1; let's take a look at the Tablet rating. There are three
variations: for large cards, for small cards and for Attraction cards: it will be worth 38, 16 and
21 respectively.

Then we define 3 tokens for the rating, which for Tablet will take the values 38, 16 and 21, and
which I will call M but for the component card-attractions-Big, the big card.
This instead will be M but for the smaller Attractions card, that's why it's Small. And finally this
one will be M too, but for card-attraction.

And if we now look up their values for Phone we see that there are only ratings for the big and
small Attractions cards. There is no rating for this one. And their values are 16 and 12.

Now, we need to see the Location values, which apply only to the Attractions cards...

For Desktop it is 14 pixels... while for Tablet: the big card is also 14 pixels, and the small card
is 12 pixels...
And for Phone: the big card is 12 and the small card is 10...

So I add the S tokens for card-attractions-big and small.

While doing some checking I found that Chechu also changed this value to 16.

If I stop to think about what I've been doing, because I got a little lost in all these details, which
are necessary but a little disorienting, what I was doing was to use as a size abstraction the
one that is generally used for sizes: that is, choose an S, M, L (small, medium, large) scale, to
which you can add XS, XL or more if needed. I built this scale from the Desktop size, which
was the one I used as a reference, that is, as default. According to the sizes of the texts used
there, I tokenized them with that scale.

But to do it I also considered the components' own scales. Here I extracted the scale of
tokens that we have so far to view all this clearly.

After these first ones, I thought about the components (I hope it is obvious at this point, but in
this context I have been talking all the time about components and I never referred to the
GeneXus component object, not even to the Figma component, right? I'm referring to abstract
parts of the layouts that have a function in themselves, that encapsulate a functionality. For
example, being a banner, or being a card of the Home, or Attractions). Well, components reset
the scale, so to speak, establish a new scale, which is internal to the component, and in some
cases is related to the default. For example, I called these XL because they will correspond to
H1 texts as that of the default scale. And then setting this as XL, it is easy to choose what
names to give to the other tokens of the component.

But, for example, what names do we give to the contact form texts, which we don't have yet?

They correspond to these two typographies...

...and we see that for Desktop one is 20 and the other is 16. We have only two values, a larger
one and a smaller one. The question is: do we call them XL and L; or L and M; or M and S; or S
and XS? I asked Chechu because I couldn't make up my mind, and she told me that in general
we start with S. So I decided to go with M and S.

And what am I missing?

The size of the texts corresponding to the labels of the menu options.

Let's analyze this in Figma. While for Desktop size we will have the menu overlaid on the Hero
image, with all the options visible, for Tablet and Phone, on the other hand, we will have the
typical hamburger menu. In the components section (this time from Figma), Chechu designed
how the menu should look like when it expands. And the size for Tablet will be this... and for
Phone this other one.

Well, the question here is: do we create a componentized token, for example calling it Menu,
as we did with the colors? Or do we consider the size of the menu labels as part of the general
default system, of the whole page, and in that case it has to be placed consistently within this
scale?

Because I couldn't make up my mind I asked Chechu, who preferred the second option,
especially if we consider that in Desktop size these elements are at the same level as the Hero
title and the rest of the page. And that in relation to the others, then, it should be an M.

But then I asked her about something that bothered me, which is that this copyright also has
an M value. That is to say, that conceptually it has the same size as the label of each menu
option.

Chechu's answer was that... I was right, that conceptually it didn't make sense. But that when
she placed the elements visually in the frame, when she was putting the design together, it
looked perfect. And this is something that happens a lot in design. Not everything is perfectly
systematized. I thought it was nice to show you this case, because it's going to happen all the
time in real life. Not everything is seamless.

Even if they have the same value of 20 pixels for the Desktop size (remember that the
copyright will only appear for that screen size, because neither Tablet nor Phone will have a
footer), conceptually the copyright should be a separate token, so that it is independent of the
size of the menu labels. But, as Chechu told me, it is not necessary to tokenize all texts. It is
necessary for the most important ones, but not for the others.

In this case, we could be inclined not to assign a token as value to the fontSize property of this
class. This is because if at a given moment we have to change the font size of the copyright,
we will only have to look for the class of that name to change it. And nothing else. Therefore
the token is not so essential in this case.

OK, if I copied things correctly, this is how the font size tokens would look like. And I'll add this
table in a new tab in the spreadsheet, so I have everything together.

Well, I don't know about you, but I'm already exhausted. I guess I must have lost several of you
along the way.

This is a sign that all this analysis, this detailed work, is cumbersome to do. Actually, I may
have made a mistake, so you may find some errors in the values I copied and so on. But it is a
job that, although tedious, is very important because the more we can systematize in the first
stage, in the earliest stage, the easier it will be to update our system later on.

In fact, yesterday I was talking with Chechu – and I am going to close this video with that, and
take all this to GeneXus in the next video, because now I'm really exhausted, and I imagine that
you are too... But well, in the conversation I had yesterday with Chechu talking just about this
topic, about how convenient it is to do this tokenization for a system as small as ours, or if it is
not more convenient to do this type of tokenization of font sizes for design systems that will
be used by several digital products and not only by one, as in our case (we are doing a custom
application, right? A customized customer-facing one). For example, I was thinking about the
work that is being done at the level of what used to be Unanimo, which is going to become the
design system – I don't remember if it was Gemini or Mercury, because the name was
changed, I think it is Mercury, for the next version of GeneXus, for the web version of GeneXus.
Well, and in that case, it is being thought of as a design system that is going to be used by any
GeneXus application, not only GeneXus. So in this case it makes perfect sense, because it is a
design system that will have to adapt to realities that we don't know beforehand. However,
Chechu told me, rightly, that it is important to do this for every system because, in fact, if it is

necessary to modify it because applications do not remain static over time, and then,
if it is necessary to give it a makeover or reengineering, having all this tokenized
saves a lot of work and then, well, it goes hand in hand with consistency, with not
losing quality, with efficiency in the changes as well. Imagine that, having these
tokens that we have just defined, if now we want to make changes to the text sizes of
the Headers, of the cards, or whatever, it is very easy. We just go to the places where
the tokens are defined, change the values and that's it, we don't have to look for
anything else. Well, a counterexample of this is what we just did with the copyright,
isn't it? Because for the copyright you will have to look for the class that defines the
copyright, to change the value there. But why did we do it this way? It is an element
that is not even repeated. It is very simple... and the cost/benefit of having it
tokenized... because, well, obviously, increasing the number of tokens makes the
reading of the system more complex.

Anyway, if we expect to become more and more project editors rather than creators,
understanding, mastering this stage is essential.

OK, having said all this, I'll let you rest now and we'll continue in the next video.

35

