
Now that we have the structure of the Stencil layout, we will work on the Design System object
to make the stencil layout look as we want.

Let's start with this text. If we are going to inspect its properties, here we have the ones related
to the sizes in the layout; we already saw them in the previous videos. Here we have the
content, and here it shows the characteristics related to typography and colors.

If we look at the typographic features we see that our designer has given them a name, H2.
This, let's remember what Chechu told us, means that she created a typographic style in
Figma. With these characteristics: this font family, with this weight, this size, this line height
and this alignment.

We will want to have properties in CSS format, because it is the one we will use in GeneXus in
our Design System Object. We copy them...

...and paste them to view them in a text file.

We are mainly interested in those related to the H2 style.

Here we see these first three that have to do with the font family. Heebo is a web font that
improves readability on digital screens, but it is not one of the standard browser fonts, so we
will have to include it in our CSS.

You can google it and download it. Here you can see it with its different weights. The one we
need for the H2 style is the one with weight 700; that is, this one, which is bold.

In this folder I downloaded Regular, weight 400; Medium, weight 500; Bold, as we know, weight
700; Extra Bold, weight 800; and Black, weight 900. I also downloaded these other fonts that
we will use later.

And I downloaded them in woff2 format. It is a modern format, which is supported by Angular
and takes up less space. The downside is that it is not supported by Android or iOS.

So, the first thing we will do is to insert these font files in the KB.

We can insert them one by one, manually... giving them a name and here choosing the file
from our folder...
We can see that when we insert it in the DesignSystems module, it is displayed separately
from the other KB files...

And then we can continue in this way, inserting each one separately... until we complete them
all...

...Or the other option, much simpler, is to insert them all together in this way... there we
indicate the folder... and by pressing Ok they would all be inserted in a single operation (and if
we have them in the Root module then we change the module to each one through the
property).

Well, we already have the font files in the KB. Let's start by adding the one corresponding to
the Heebo-Bold font to our Design System Object.

The first thing to do is to declare the set of styles.

And now, let's write the font-face rule to add precisely the font.

With the font-family property we give the name that we will use for this font throughout the
DSO (I will enter the corresponding weight, which is 700, as a comment); and with this other
property we indicate the source, that is to say, where it is located. For this we use the GeneXus
function "gx-file"... its parameter is the name of the source file, qualified with the module
where it is located.

We are now able to specify our first class, which we will call the same as our designer called
the typographic style: h2.

Remember that the classes of a DSO are extremely similar to those of CSS, since for the Web
case they will be effectively transformed into CSS. That is why to select them we must first
type a period and then the name of the class.

The first three properties will be transformed into one, the font-family, which here will refer to
this name, precisely. We don't need to vary the style or weight of the font, because we are
using one with exactly that style and weight. We will always use the exact font to avoid
distortions, and that is why we integrate a font file for each weight.

Then we will use these other two properties as they are, removing the decimals.

Let's save and before testing anything we'll see what class is associated with this Textblock.
The class with this name.

Before replacing it with the new one, let's run the application to compare it.

Now, let's go to the stencil... and let's change the TextBlock class to the new one, h2.
Let's save. And run.

And here we see it clearly.

(If you are prototyping in the cloud, something that is not advisable during development, and
you don't see the change when running it, reload it and clear the cache –in Windows with
Ctrl+F5).

A couple of remarks before moving on:

Before this change, the Stencil textblock had a class name (TextBlock, precisely) that is not
specified in the DSO, and that didn't cause any problems. It took the browser defaults.

In addition, having changed the class, that change was automatically made in the two panels
in which that stencil is instantiated... That's why we see it here... and we will also see it in this
other case.

Ok, what about the color of the text? It will be this type of green, which has this hexadecimal
value. Chechu had called it Secondary, creating a style with this name, a color style. If we see
the CSS properties that we had copied, we have just so indicated the one for the color, with the
hexadecimal value.

We could copy this CSS property without thinking too much...

... and come to our DSO and paste it. We see how the properties window shows all the
possible properties to write inside a class and here are the ones we use. We can filter by those
that we have modified to have them in view.

Let's record and test this at runtime.

And there we see it, just as we expected.

Well, this exact color is not only going to be used here for this text, but for this other one, for
this background, for this other text, for this other one... that is to say, it is going to be repeated
in many places.

This value responds to a semantic concept, to a semantic color; it is the secondary color of
the application, and the primary color is this other green. That is why Chechu defined it as a
color style and we will define it as a token in our DSO.

It will be a color token... which we will call Secondary... and its value will be no more and no
less than this one here.

Remember that the token editor works in two ways. We can edit it directly as text or from the
graphical editor.

And now we save...

...and go to the styles tab and change the value for the Token. With the dollar symbol we're
indicating that here we want to reference a token, a color token... (there it is, it has to be like
that), and when we type a period and the first letters of the token, it offers the ones that begin
with those two letters.

In this way, then, we are indicating that the color property takes its value from the color token
of this name, Secondary.

So, if later on Chechu wants to change the color of this value to any other value, we'll just
change it here. And we won't have to change the class at all. Ok, let's save.

At runtime we will not notice any changes at all because we will continue to see that green
color.

Well, what about these three properties that we didn't copy to our h2 class?

The first two have to do with the container that was used in Figma to place these two texts
inside. And this one in particular.

It is a group or a frame that was cataloged as Auto Layout and that we will talk about later, but
we can already say it is implemented with a Flex container. We went the other way, which was
to choose a table to implement this container.

Therefore, we don't need the first property, display, at all. And we implemented these two
properties....

... through the horizontal and vertical alignments ... of the two elements.

So we don't need to copy any of these properties to our class.

Thus the style of the control itself is clearly separated from what is more structural and has to
do with the alignment of the control in the layout. This is one possibility, of course, and it is not
necessarily the best one.

In the implementation we are doing, the spacing and alignment parts are being solved in the
layout itself, and the rest of the style is being handled in the DSO. A DSO is easier to change
than a layout, so making these decisions has pros and cons.

One last thing before finishing, at runtime the Home text, because of its size, is being
displayed in two lines... let's see what happens with the Attractions text.

This one is divided into three...

... as we can see in the Figma file.

So what we would have to do is to separate this text into three lines.

This is a way to do it: here is the name of the textblock, which is the one that comes from the
stencil, Information, underscore, and the name of the control in the stencil, TitleInformation.

Then I go to Home and in the events, in ClientStart, to Information Title Information period
Caption I assign “The new"...
I save and run.

And here we see it.

Well, now let's move on to give a style to the paragraph and the button... in the next video.

