

In the previous module we had seen that these two parts of the Home and Attractions screens
had the same structure so we could choose to model them inside a Stencil object, precisely to
reuse them, and then....

...insert it as a control in each of these panels.

In this class, we are going to analyze which control hierarchy should be used to implement the
structure of this stencil...

In the next classes we will see how to make that structure look as defined by our designer in
the Figma file.

So let's start by creating the Stencil in GeneXus.

To do this, from this folder, which is where we want to create the Stencil object, we choose the
stencil object type and name it Information.

The layout is initialized with a table called Main Table. As long as we don't place any controls
inside, it will remain empty.

If we right-click, it offers us to convert this table into two types of containers that have specific
uses: Canvas, which we will use later to implement the Header of the Master Panel, and that
will allow us to superimpose controls; and Flex that will allow us to place the elements of the
table in one direction, either horizontally –as a row– or vertically –as a column.

Let’s analyze this layout, which is the one we want to implement, in Figma.

First, note that here we are positioned in the Home frame, which is the one that designs the
Home page. It has a width of 1440 pixels and a height of 2514 pixels. And they will all be more
or less the same. What does this mean? That if we run our GeneXus objects, our panels, in a
browser with these dimensions, the screens should look exactly like this.
But, as Chechu told us, this design was devised so that the width can be extended or reduced
a bit and the design adapts to the new width. As she said, this design corresponds to a certain
width and small variations of that width, because if we shrink it enough, we will have to
reassemble these screens, design them again to arrange the information in a different way,
according to that screen width. This is what is known as breakpoints, where the design must
be modified. It will also be used for Tablet, Phone and small variations of those sizes.

Now let's analyze the layout we are interested in, the one we are trying to implement
with the Stencil object. It corresponds to this container here, the one named
Information, which contains two elements: another container, the one named
Information Title that we see on the left side of the screen, and a text to the right.

The container on the left, in turn, contains another text, this time on top, and a button below,
which as we can see, is an instance of a component; this component will have two layers, one
for the background and one for the text of the button, and we will analyze it later.

So, structurally we could organize this screen like this: a table (our main table) with a single
row and two columns, where in the first one we have another table, and in the second one the
text control, which in GeneXus could be either a TextBlock or a text variable of type edit,
readonly. And the internal table would have a single column and two rows, where in the first
one we would place the other text control (TextBlock or variable, we will have to choose) and
in the second one the button.

If we do it in GeneXus...

We already have the table; it is the Main table. So, let's insert the first element, which is the
other table. Let's rename it to match the name that our designer gave it, it will be easier to find
it. Okay, now let's insert the element on the right, which was the text.
We can choose to implement it with a variable type control or with a textblock.

I'm going to go with the variable. I'm going to drag it and create it with the same name that our
designer gave it, Information Text. I'm going to set as data type any of those that represent
characters: it could be Character, VarChar or LongVarChar, the one I'm going to choose. As we
will see, and I will explain in a little while, choosing this data type will cause the Auto Grow
property to be automatically set to True.

One of the drawbacks of variables is that they are write-enabled by default. So I’m going to
change the Readonly property so that it is read-only.
The other drawback is that they have a label by default, so I’m going to set the position of the
label to None, that it is nowhere, hidden.

As I was saying, I could have chosen, instead of the variable, to represent this with a Text
Block. I choose the variable because it is possible that this information, the content, comes
from the Backoffice, that is to say, it is extracted from the database, and it is easier to assign
the content to a variable, simply with the direct assignment by means of the equal sign, than to
do it for the Text Block, for which I will have to use the Caption property. Textblock, period,
caption, equal... and then assign a value. This is precisely one of the border cases, isn't it? This

text is not going to vary, therefore it could well be a text block. It is clearly its use... we
are inclined to use a variable when the content changes.

Now, before adding the controls for this table, let's look at the properties of the main table, in
particular these four.
The first one specifies the width of each of the two columns. And the second one specifies the
height of the only row that the table has at the moment.
What do these values of 50% mean for each column? That its width will be 50% of the total
width of the table. And what is the total width of the table? The one given by the Width
property, which in this case is also a percentage, indicating that the width of the table will
correspond to 100% of the width of its container.

And what does the pd value mean in the property that determines the height of the rows? Here
it indicates it clearly, it is an abbreviation of Platform Default. This default depends on each
platform, but it is a fixed value. We could specify a percentage, in which case it is relative to
the height of the table –here we also see that it is 100%– or we could specify a value in dips,
which is the same as pixels.

The dip is an abstraction of the pixel unit that was first used in GeneXus when we started
implementing native applications. The equivalence is one to one.

Let's place here the 712 dips or pixels that we obtained by inspecting the frame in Figma.
Does it seem odd that the height of the row is this size, but the height of the table (which only
has that row) is 100%? Here's a word of caution: although the editor is not distinguishing the
table border from the row border, they are not the same thing. The table border will extend to
100%, and the row border will correspond to these 712 dips.

Controls, by default, take up the entire space of the cell in which they are placed. Thus, if we
look at the properties of this table, which is empty for now, its width and height are set to
100%, i.e., they will take up the entire cell in which they are placed.

The same will happen with the variable, and we need to know this because there is no property
that evidences it.
What will happen if the content of the variable is so large that it doesn't fit in the 712 pixel
height of the cell? Since the Auto Grow property is set to True, as is the same property at the
table level, then what will happen is that the cell will expand downwards so as not to leave
content outside. If the property were set to false, then the content would be truncated at 712
pixels or dips.

If we leave it like this, although the row will be 712 pixels or dips high, as the height of the table
was set to 100%, if the container of this stencil has a height greater than 712 pixels, then there
could be an empty space.

The other alternative would be to set the row height to 100%, i.e., to take up 100% of the table
height, and define in the table height those 712 dips or pixels.

Now let's insert the text as TextBlock in this table (we know that it is a short text, which
probably will not change), let's call it the same as Chechu did in Figma. And to the Caption for
now I’m going to leave Title, because later on it will be updated in the Home and Attractions
panels with the value that it will have to take in each one.

And in another row we insert the button.

If we look at the table properties, we see that the column is now a single column, 100% of the
width, and each row will take the default platform height. Clearly we will have to change this,
so let's go to Figma to see what values we need for the widths and heights.

But before analyzing these sizes, let's analyze the case of the external container.

What I want to focus on now is the spacing between the elements and the border of the
container. We will continue in the next video.

