

P
ag

e1

Running a business process on a mobile device

So far, we have associated GeneXus objects executed on a web page to the interactive tasks of process
diagrams.

It is also possible to associate GeneXus objects executed on a smart device, to user tasks. For example,
suppose that we want to execute the process of entering a reservation at the travel agency from a mobile
device.

We will simplify the ticket reservation process we defined previously. So, we remove the validation sub-
process and certain symbols we will not be using. To specify the reservation’s availability we will use the
Reservation transaction and its ReservationAvailable attribute.

We then select the TicketReservation task, and, for this example, we delete the value of the Roles property

P
ag

e2

leaving it empty. And we do the same with the None Start Event.
The first thing we will do now is apply the Work With pattern to the Reservation and Customer transactions
that are involved in the process. To do that we go to Folder View, select both transactions, right click and
choose Apply Pattern and Work With .

We see that, under the node of the Customer transaction is the SD object: WorkWithCustomer, and under
the Reservation transaction is the SD object: WorkWithReservation.

Now we will associate the SD application generated by the pattern with the TicketReservation task. To do so
we go to the task’s properties and in the Object property we press the button and select
WorkWithReservation.

We press tab and associate the relevant data ReservationId.

We now press OK.
Something very important to consider when associating SD objects is that relevant data is not mapped
automatically between the diagram and the SD object. To achieve this association we must have a
procedure.

We open the procedure object ReservationMapRelevantData that we created previously.
In the rules section we will see that we defined a Parm rule that receives the reservation and

P
ag

e3

customer identifiers in the ReservationId and CustomerId attributes respectively.

The following variables are also defined:

And in the source, using the Workflow API, we obtain the relevant data ReservationId by its name and
associate it to the ReservationId attribute we received by parameter.
We do the same with relevant data CustomerId and the CustomerId attribute.

We must not forget to include the Commit when working with Workflow data types.

As we ask for the isNull() value of CustomerId, we can see that we added the following rule to the
Reservation transaction:

Now we open the WorkWithReservation object, then go to its Detail / General section and modify the Save
event adding the invocation to the procedure we just created.

Event 'Save'

 Composite

 SDActions.Save()

 ReservationMapRelevantData.Call(ReservationId,CustomerId)

 return

 EndComposite

EndEvent

This will allow that, when we insert a new reservation from the SD application, all the corresponding
relevant data will be mapped.

Next, we associate the RecordCustomer task to the WorkWithDevicesCustomer application and assign the
relevant data CustomerId:

P
ag

e4

As it happens with the reservations, we must have a procedure to associate the CustomerId relevant data to
the CustomerId parameter of the Customer transaction.

To this end, we have created the procedure called CustomerMapRelevantData. Let’s open it…
In the rules section we see the Parm rule that receives the customer identifier in the CustomerId
attribute:

We see the defined variables of the Workflow data types:

And the source implemented, where we obtain the CustomerId relevant data by its name and associate
it with the CustomerId attribute we receive by parameter.

We now go to the WorkWithCustomer object in the Detail / General section, and modify the Save event
adding the invocation to the CustomerMapRelevantData procedure.

Event 'Save'

 Composite

 SDActions.Save()

 CustomerMapRelevantData.Call(CustomerId)

 return

 EndComposite

EndEvent

P
ag

e5

In our diagram, we will assign the ReservationAvailability task to the WorkWithReservations object, similarly
to what we did before with the Reservation task.

If the reservation is available, then the process ends. Otherwise, we must enter a new reservation. This
assessment is done with the exclusive Gateway.

When we double click on the connector that links the Gateway to the TicketReservation task, we see that
we had already entered the condition necessary.

In order to execute the process diagram we built, we must import and set up the GXflow client for Smart
Devices. Here, we have done it already, but the details may be found at the following link shown on screen:

Once the GXflow client for SD has been imported and set up, we need an invocation to each SD object used
in our process diagram, so we must add the following code to the WorkflowSDClient dashboard:

Event 'DummyCalls'

 WorkWithDevicesReservation.Reservation.Detail(1)

 WorkWithDevicesReservation.Reservation.List()

 WorkWithDevicesCustomer.Customer.Detail(1)

 WorkWithDevicesCustomer.Customer.List()

EndEvent

Now we’re ready to execute our ticket reservation process on a mobile platform. So, we first do a Build All,
…and then press F5.

We can see that the Android emulator was executed automatically, showing the login screen:

P
ag

e6

For our login we will use the workflow administrator user, so we enter user: WFADMINISTRATOR and use it
also as password.
Upon entering, we view a screen showing the input and output trays We select the input tray and press the
‘+’ button to instance a process.

.

P
ag

e7

Now we select the FlightTicketReservationSD process.

And we will see that the process window opens up. We press the Start button to start the process.

P
ag

e8

Now we see that the process has been started, and we have the TicketReservation task pending execution.

We click on the task, …and press the arrow button to start it.

P
ag

e9

We can see that the SD object to work with reservations is opened, for us to enter a reservation. We will
enter a new reservation and leave the ID unspecified because it is autonumbered; and we leave the
customer identifier empty.

Now we press the Confirm button and to end the task, we press Complete. We will see the input tray open
up, so now the task pending execution is RecordCustomer.

P
ag

e1
0

Because we did not enter the customer, the workflow engine assessed the condition of the exclusive
Gateway “Is the passenger a customer?”, and determined that the following task will be RecordCustomer,
which will invoke the SD object Work with Customers, for us to enter the customer.

We now execute the Record Customer task, …enter the customer data, and press Confirm.
To end, we finalize the Record Customer task.

P
ag

e1
1

The next task that appears pending is ReservationAvailability. We click on it to open the task,
… and go on to execute it. Note that the customer was successfully assigned to the reservation, because the
procedure associated with the batch task AssociateCustomerToReservation was executed correctly.

We will indicate with a checkmark that the reservation is available, and then press Confirm.
To end, we finalize the ReservationAvailability task.

P
ag

e1
2

Now the input tray does not show any other pending tasks, which means that the execution of the travel
agency’s reservation process has been completed.
If we had indicated with a checkmark that the reservation was not available, then the SD object
WorkWithReservation would have been executed again for us to enter a new reservation.

Here, we have seen how to execute a business process diagram on a mobile device.
Specifically, we have associated the objects generated by the pattern Work With for Smart Devices to the
tasks. But we could have also associated a smart device object we created, such as, for example, a panel for
SD.
In this case, we generated the application for smart devices on Android, and executed it using an emulator.
However, it is possible to prototype on a physical device and generate applications for other platforms such
as iOS devices like the iPad or iPhone. To learn more about Smart Device applications visit the link shown on
screen:

For further possibilities of the GeneXus BPM Suite, visit the wiki link.

