Evaluation Tree of Rule and Formula Triggering

GeneXus

Rules in Transactions

Add(..., ...);
Error(:4..2) if-.;
Procedure(...);
&var = value;
Msg(“...");
Subtract(..., ...);

©EOOEE

We know that the rules in a transaction are stated in any order and
GeneXus determines when each one is triggered. This is sometimes
confusing for developers, because they feel they are no longer in
control.

But this is actually an advantage. Developers should only focus on
declaring the logic and GeneXus will automatically infer where and
when each rule should be triggered.

Reality

=]

Structu

Flight X

Name
= [T Fight

? riightd
Sa FlightDepartureAirportid
Sy FlightDepartureAirportame
Sy FlightDepartureCountryld
Sy FlightDepartureCountryName
Sy FlightDepartureCityld
Sy FlightDepartureCityName
Sa FlightArrivalAirportid
S¢ FlightArrivalAirportName
Sy FlightArrivalCountryld
Sy FlightArrivalCountryName
Sy FlightArrivalCityld
Sy FlightArrvalCityName
© FlightPrice
® FlightDiscountPercentage
2 Airineld
¥ AirineName
¥ AirfineDiscountPercentage
/a, FlightFinalPrice
/a, FlightCapacity
© FlightAvailableSeats
=| Seat

9 Fiightseatid

? FlightSeatChar

P FlightSeatLocation

Customerld

¥ CustomerName

% Web Form | % Win Form

E Invoice X

Structure | % Web Form | % Win Form | Rules | Events | Variables | Help | Documentation | Patterns

Name
o
=&

Invoice
? Invoiceld
P InvoiceDate
A Customerld
¥ CustomerName
¥ CustomerTotalPurchases
InvoiceTotalAmount
= | Flight
? Flightld
¥ FlightAvailableSeats
P InvoiceFlightSeatQty
g\' FlightFinalPrice
InvoiceFlightAmount

Type

Invoice

d

Date
Numeric(4.0)
Character(20)
Price

Price

Flight

d
Numeric(4.0)
Numeric(4.0)
Price

Price

Formula

sum(InvoiceFlightAmount)

FlightPrice * (1-AirlineDiscountPercentage/100) IF AirlineDiscountPercentag...

InvoiceFlightSeatQty * FlightFinalPrice

To explain this topic, we will use the Invoice transaction that has a
second level (Flight), to represent the flights included in the invoice.

We are going to focus on this transaction and on triggering its rules.

¥ Fiight X

re % Web Form

- B Fught

§ Fightid
S FlightDepartureAirportid
Sy FlightDepartureAirportName
Sy FlightDepartureCountryld
Sy FlightDepartureCountryName
Sy FlightDepartureCityld
Sy¢ FlightDepartureCityName
S FlightArrivalAirportid
Sy FlightArrivalAirportame
S¢ FlightArrivalCountryld
Sy FlightArrivalCountryName
S¢ FlightArrivalCityld
Sy FlightArrivalCtyName
* FlightPrice
* FlightDiscountPercentage
2 Airlineld
¥ AriineName
¥ AirlineDiscountPercentage
&, FlightFinalPrice
/m, FlightCapacity
* FlightAvailableSeats
Seat
§ Fiightseatid
§ Fightseatchar
 FiightSeatLocation
2 Customerid
¥ CustomerName

£ Win Form

'4-\-] Invoice X

Structure

Name

%= Web Form

——
=1 &4 Invoice

? Invoiceld

P InvoiceDate

A Customerld

¥ CustomerName
CustomerTotalPurchases

v
i InvoiceTotalAmount
|| Flight

? Flightld

¥ FlightAvailableSeats
P InvoiceFlightSeatQty
E, FlightFinalPrice

/a, InvoiceFlightAmount

% Win Form | Rules

Type
Invoice

d

Date
Numeric(4.0)
Character(20)
Price

Price

Flight

1d
Numeric(4.0)
Numeric(4.0)
Price

Price

iEventsiVariables Help | Documentation | Patterns

Formula

sum(InvoiceFlightAmount)

FlightPrice * (1-AirlineDiscountPercentage/100) IF AirlineDiscountPercentag...
InvoiceFlightSeatQty * FlightFinalPrice

Note that in the Flight transaction we have added the FlightAvailableSeats
attribute, which will be used to record the seats available in each flight.
The number of seats available will decrease every time that an invoice is
issued to a customer who has purchased a number of seats in the flight.

We have added it, then, at this level. It will be an inferred attribute.

Reality

9 Flight X

Structure 1 % web Form | % Win Form

Name

= [Fiight
¥ riightid
Sa FlightDepartureAirportid
Sy FlightDepartureAirporthame
Sy FlightDepartureCountryld
S¢ FlightDepartureCountryName
Sy FlightDepartureCityld
Sy FlightDepartureCityName
Sa FlightArrvalairportid
S¢ FlightarrivalAirportName
S¢ FlightArrivalCountryld
Sy¢ FlightArrivalCountryName
Sy FlightArrivalCityld
Sy¢ FlightArrivalCtyName
* FlightPrice
© FlightDiscountPercentage
2 Airfineld

W Invoice X

Name

e | % Web Form

Structure | % Web Form | % Win Form | Rules | Events | Variables | Help | Docume =] customer
§ customerid
P customertiame

Name
—
=8

Invoice

? Invoiceld

© InvoiceDate

2 Customerld

¥ CustomerName

¥ CustomerTotalPurchases

;\ InvoiceTotalAmount

[=] Fiight

§ Flightid

¥ FlightAvailableSeats
© InvoiceFlightSeatQty
fz\t FlightFinalPrice

!ix InvoiceFlightAmount

Type
Invoice

d

Date
Numeric(4.0)
Character(20)
Price

Price

Flight

d
Numeric(4.0)
Numeric(4.0)
Price

Price

Formula

Customertasthame
CustomerAddress
CustomerPhone
CustomerEmail
CustomerAddedDate
CustomerTotalPurchases

% Win Form | Rules | Events

Type

Customer

1

Name

Name

Address, GeneXus
Phone, GeneXus
Email, GeneXus
Date

Price

sum(InvoiceFlightAmount)

FlightPrice * (1-AirlineDiscountPercentage/100) IF AirlineDiscountPercentag...

InvoiceFlightSeatQty * FlightFinalPrice

¥ AirineName

¥ AirlineDiscountPercentage
/&, FlightFinalPrice

/a, FlightCapacity

L aBC DEF| .
© FlightAvailableSeats l aee oee -
5[E] seat lpee wes
9 Fightseatid {mee woe
9 Fightseatchar lwee wow
P FiightSeattocation l eee wee(
& Customerld o]) oee (
« CustomerName
In the Customer transaction we've also added the

CustomerTotalPurchases attribute to record the total amount spent by the
customer in flight ticket purchases. We also added it to our transaction as
an inferred attribute.

The attributes InvoiceTotalAmount, FlightFinalPrice, and
InvoiceFlightAmount of the Invoice structure have been defined as
formulas.

Invoice rules

'T Invoice X
Structure | % Web Form | % Win Form | Rules | Events | Variables | Help | Documentation | Patterns

Default(InvoiceDate, &Today);

Subtract(InvoiceFlightSeatQty, FlightAvailableSeats);

4 Invoice X

3 % Web Form | % Win Form | Rules | Events | Vaniables | Help | Docur 5 Err‘or("Ther‘e are no more seats for sale")
T Wi S 8 if FlightAvailableSeats < ©;
4| Invoice Invoice
? 1nvoiceld] 7
{ InvoiceDate Date 2= Add(InvoiceTotalAmount, CustomerTotalPurchases);
& Customerld Numeric(4.0) =
¥ CustomerName Character(20) j
¥ CustomerTotalPurchases Price
/&, InvoiceTotalAmount Price sum{InvoiceFlightAmount)
Flight Flight
¥ Fughtid 1d
¥ FlightAvailableSeats Numeric(4.0)
P InvoiceFlightSeatQty Numeric(4.0)
:v FlightFinalPrice Price FlightPrice * (1-AirlineDiscountPercentage/100) IF AirfineDiscountPercentag...
; InvoiceFlightAmount Price InvoiceFlightSeatQty * FlightFinalPrice

In the Invoice transaction, we have defined the following rules to specify
its behavior:

The Default rule, which initializes the invoice date attribute with today's
date; the Subtract rule, which decreases the number of available seats on
the flight according to the number of seats purchased on the invoice -
note that it will be decreasing a Flight table attribute: Here,
FlightAvailableSeats is inferred; the Error rule displays an error message if
the flight no longer has available seats; and the Add rule adds the invoice
total to the total purchases made by the customer -again, an attribute
included in a table of the extended table, Customer.

Evaluation tree

(R) Default(InvoiceDate, &Today); Invoice

<ErrorViewer: ErmorViewer>

(R) Add(InvoiceTotalAmount, CustomerTotalPurchases);

(F) InvoiceTotalAmount = Sum(InvoiceFlightAmount) <Toolbar>
(F) InvoiceFlightAmount = FlightFinalPrice * InvoiceFlightSeatQty 19 [invoiceld
(F) FlightFinalPrice = FlightPrice * (1 - AirlineDiscountPercentage...) Date [inwoiceDate

(R) Subtract(InvoiceSeatQty, FlightAvailableSeats);
(R) Error(“There are no more seats for sale”) if FlightAvailableSeats < O;

Customer Id | Customerld

Customer Name CustomerName

Customer Total Purchases |CustomerTotalPurchases

Total Amount InvoiceTotalAmount

Flight
Flight id | Flight Available Seats | Seat Qty Flight Final Price | Flight Amount
flightld | |FlightAvailableSeats || llvoiceflightSeatQty || [FiightFinalPrice | [InvoiceFlightAmount

<FormButtons>

In short, we have all these rules and formulas defined in the Invoice
transaction:

The big question is how does GeneXus know in what order to trigger
them, and when to trigger them and when not to?

Of course, first there is a natural order that corresponds to the ordering of
the attributes on the screen (from top to bottom and from left to right).

Evaluation tree

(R) Default(InvoiceDate, &Today);

(R) Add(InvoiceTotalAmount, CustomerTotalPurchases);

(F) InvoiceTotalAmount = Sum(InvoiceFlightAmount)

(F) InvoiceFlightAmount = FlightFinalPrice * InvoiceFlightSeatQty

(F) FlightFinalPrice = FlightPrice * (1 - AirlineDiscountPercentage...)

(R) Subtract(InvoiceSeatQty, FlightAvailableSeats);

(R) Error(“There are no more seats for sale”) if FlightAvailableSeats < O;

CustomerTotalPurchases

Invoice

error(‘There is no more seats...’) InvoiceTotalAmount

4 i \ / InvoiceDate

— FlightAvailableSeats ~InvoiceFlightAmount '\

Date - 10/13/20
. \ / \ aloday,
r L"‘
Customer Id 0 FlightFinalPrice

InvoiceFlightSeatQty

Customer Name

A rule or formula is triggered as soon as the required information is
accessed. For example, the Default rule only needs the value of the
&Today variable and to know that it is in Insert mode. That's why as soon
as we open the screen in Insert mode we already see the value in the field,
even though we haven't even reached it (we are barely positioned on
Invoiceld).

Evaluation tree

(R) Default(InvoiceDate, &Today);
(R) Add(InvoiceTotalAmount, CustomerTotalPurchases);

(F) InvoiceTotalAmount = Sum(InvoiceFlightAmount)

(F) InvoiceFlightAmount = FlightFinalPrice * InvoiceFlightSeatQty

(F) FlightFinalPrice = FlightPrice * (1 - AirlineDiscountPercentage...)

(R) Subtract(InvoiceSeatQty, FlightAvailableSeats);

(R) Error(“There are no more seats for sale”) if FlightAvailableSeats < O;

1 invoice X

© Web Form
Name
= — Invoice
? Invoiceld
P InvoiceDate
A Customerld
¥ Customertiame
¥ CustomerTotalPurchases
/3, nvoiceTotalAmount
Flight
§ Fighud
¥ FlightAvailableSeats
P InvoiceFlightSeatQty
ny FightFinaiPrice
wfp /i, InvoiceFlightAmount

oW

error(‘There is no more seats...")

CustomerTotalPurchases

InvoiceTotalAmount

/ InvoiceDate

FlightAvailableSeats InvoiceFlightAmount \

InvoiceFlightSeatQty

&Today
FlightFinalPrice

Invoice

Customer Id

Customer Name

Customer Total Purchases 000
Total Amount P 000
Flight

Flightid Flight Available Seats

000

Seat Qty Flight Final Price Flight Amount

000

000

000

000

0.00

Let's think about what happens with the formula of the first level:
InvoiceTotalAmount, which is a sum of a second-level attribute. Since the
Sum formula needs only the InvoiceFlightAmount attribute, it will be
triggered for the header even before the first line could be entered, giving

0.

Evaluation tree

Invoice

(R) Default(InvoiceDate, &Today);

(R) Add(InvoiceTotalAmount, CustomerTotalPurchases);
(F) InvoiceTotalAmount = Sum(InvoiceFlightAmount)
(F) InvoiceFlightAmount = FlightFinalPrice * InvoiceFlightSeatQty Date
(F) FlightFinalPrice = FlightPrice * (1 - AirlineDiscountPercentage...)

(R) Subtract(InvoiceSeatQty, FlightAvailableSeats);

(R) Error(“There are no more seats for sale”) if FlightAvailableSeats < O;

Customer id

Customer Name Joseph

Customer Total Purchases 2511000
B Invoice X
¥, Web Form | & w Total Amount 9900 00
Nome CustomerTotalPurchases
) 1woice Flight
? tavoiceid X
P InvoiceDate error(‘There is no more seats...”) InvoiceTotalAmount Flightid Flight Avallable Seats Seat Qty Flight Final Price Flight Amount
A Customerld . X 1 148 2700.00 540000
¥ Customerhiome InvoiceDate
1. . . X 497 4500.00 450000
= Coslonaruiibachoess FlightAvailableSeats InvoiceFlightAmount 5 i
@, InvoiceTotalAmount i 0 000 0.00
Flight
¥ Fughud &Today 0 000 0.00
¥ FlightAvadableSeats i 3 FlightFinalPrice o o8 60
P InvoicerlightseatQty InvoiceFlightSeatQty 2

ay FlightFinaiPrice
a, InvoiceFlightAmount

But then, as we enter lines, it will be triggered again for each one. But what
happens if we access the transaction in Update mode and, for example, change
something in a line that does not modify the InvoiceFlightAmount at all? (in this
case, we don’t have any attributes to be modified that don’t modify that value,
because the only two editable attributes are the line ID, which cannot be

changed because it is part of the primary key, and

then the

InvoiceFlightSeatQty, which does modify the value of InvoiceFlightAmount.
However, imagine that there were one; for example, that it must be indicated if a
passenger has diabetes, and the line in question said Yes, and now we want to
change it to No). Obviously, in that case, the header formula would not be

recalculated.

10

Evaluation tree

(R) Default(InvoiceDate, &Today);

(R) Add(InvoiceTotalAmount, CustomerTotalPurchases);

(F) InvoiceTotalAmount = Sum(InvoiceFlightAmount)

(F) InvoiceFlightAmount = FlightFinalPrice * InvoiceFlightSeatQty

(F) FlightFinalPrice = FlightPrice * (1 - AirlineDiscountPercentage...)

(R) Subtract(InvoiceSeatQty, FlightAvailableSeats);

(R) Error(“There are no more seats for sale”) if FlightAvailableSeats < O;

CustomerTotalPurchases

error(‘There is no more seats...’) InvoiceTotalAmount

/ InvoiceDate

FlightAvailableSeats InvoiceFlightAmount

\ / FlightFinalPrice

InvoiceFlightSeatQty

N

&Today

This is also obvious to GeneXus, which internally extracts the existing
dependencies between places assumed by the controls on the screen,
the rules and formulas, to build a dependency tree (known as evaluation
tree) that will determine which rules and formulas will have to be
triggered again when changes are made to attributes on the screen. In
this example it will be as shown below:

11

Evaluation tree

) invoice
? Invoiceld

(R) Default(InvoiceDate, &Today);

(R) Subtract(InvoiceSeatQty, FlightAvailableSeats);

(R) Add(InvoiceTotalAmount, CustomerTotalPurchases);

(R) Error(“There are no more seats for sale”) if FlightAvailableSeats < O;

© Invoiceate

2 Customerld

¥ CustomerName

¥ CustomerTotalPurchases

(F) InvoiceTotalAmount = Sum(InvoiceFlightAmount) J, invoiceTotalAmount
Flight

(F) InvoiceFlightAmount = FlightFinalPrice * InvoiceFlightSeatQty ? Fighud

(F) FlightFinalPrice = FlightPrice * (1 - AirlineDiscountPercentage...) : ,F,I,\g:::;:::;:

oy FlightFinalPrice

/a, InvoiceFlightAmount

CustomerTotalPurchases

error(‘There is no more seats...") InvoiceTotalAmount

/ InvoiceDate

FlightAvailableSeats InvoiceFlightAmount

\ / FlightFinalPrice

InvoiceFlightSeatQty

N

&Today

For example, note what happens with the attribute InvoiceFlightSeatQty. On it
depends the update using subtract of the attribute FlightAvailableSeat, on
which, in turn, the triggering of the error rule depends. For this reason, the
condition of the error rule must be written knowing that, because of this
dependency, the subtract will always have already been executed and that is
why the condition ‘'less than zero' is placed. Remember that, as we have
already studied, if there are negative entries, everything done in the tree that
led to this error will be undone.

At the same time, the updating of the InvoiceFlightAmount formula also
depends on InvoiceFlightSeatQty, as does that of the header,
InvoiceTotalAmount, on which the updating of the client's total purchases
depends.

We can imagine that the tree is executed in a bottom-up manner. That is to
say, every time an attribute value is updated, all the rules and formulas that
depend on this attribute (and that are located upwards in the tree) are
executed.

12

Evaluation tree

Invoice

Ia

Date

Customer Id

Customer Name

Customer Total Purchases

Total Amount

Flight

CustomerTotalPurchases

error(‘There is no more seats...") InvoiceTotalAmount

o \ / InvoiceDate

FlightAvailableSeats InvoiceFlightAmount \

osepn \ / \ &Today
FlightFinalPrice

540000 InvoiceFlightSeatQty

5400.00

|

N7
Flightid Flight Available Seats Seat Qty Flight Final Price Flight Amount

. InvoiceFlightAmount = FlightFinalPrice * InvoiceFlightSeatQty

9% 2 2700 00 5400 00 ===
0 000 000
0 0.00 0.0
0 000 000
0 0.00 000

Let's continue with the previous example:

If the number of seats in an invoice line (InvoiceFlightSeatQty) is updated,
since this attribute is part of the formula that calculates the cost of the flight
(InvoiceFlightAmount), this formula will be triggered again.

13

Evaluation tree

Invoice

error(‘There is no more seats...”) InvoiceTotalAmount

]

Date 20 | @) \ / InvoiceDate
p—— FlightAvailableSeats InvoiceFlightAmount \

Ciloined i@ Josaph \ / \ &Today
FlightFinalPrice

Customer Total Purchases 5400.00 'nVOiceF"ghtseatQty
Total Amount 5400.00 4{‘2\%
o
Flight N
5\\‘«.
Flightid Flight Available Seats Seat Oty Flight Final Price FllgMAmoui!‘h\& 7 z . . p ~ 7 z
= : i i NG InvoiceFlightAmount = FlightFinalPrice * InvoiceFlightSeatQty
0 0.00 0.00 \"\ R
'
0 ¥ 000 0.00 -

InvoiceTotalAmount = Sum(InvoiceFlightAmount)

When it is triggered again, the formula corresponding to the total amount of
the invoice (InvoiceTotalAmount) will also have to be triggered again.

Evaluation tree

Invoice

C]

Date

Customer Ig

Customer Name
Customer Total Purchases
Total Amount

Flight
Flightid Flight Avaliable Seats

%8

© © o o

Joseph
540000 f—

5400.00

Seat Qty Flight Final Price Flight Amount

270000 5400.00

CustomerTotalPurchases

error(‘There is no more seats...’) InvoiceTotalAmount

/ InvoiceDate
FlightAvailableSeats InvoiceFlightAmount '\

\ / \ &Today
FlightFinalPrice

InvoiceFlightSeatQty

InvoiceFlightAmount = FlightFinalPrice * InvoiceFlightSeatQty

InvoiceTotalAmount = Sum(InvoiceFlightAmount)

Add(InvoiceTotalAmount, CustomerTotalPurchases);

Lastly,

changing the total
Add(InvoiceTotalAmount,

also implies having to trigger the rule

CustomerTotalPurchases) because the

customer's total purchases have to be updated.

15

Evaluation tree

(R) Default(InvoiceDate, &Today);

(R) Add(InvoiceTotalAmount, CustomerTotalPurchases);

(F) InvoiceTotalAmount = Sum(InvoiceFlightAmount)

(F) InvoiceFlightAmount = FlightFinalPrice * InvoiceFlightSeatQty
(F) FlightFinalPrice = FlightPrice * (1 - AirlineDiscountPercentage...)
(R) Subtract(InvoiceSeatQty, FlightAvailableSeats);

(R) Error(“There are no more seats for sale”) if FlightAvailableSeats < O;

CustomerTotalPurchases

error(‘There is no more seats...") |nvoiceTotalAmount

& /

FlightAvailableSeats InvoiceFlightAmount

K

ightFinalPrice

InvoiceFlightSeatQty

In addition to triggering all the formulas and rules included in the right branch
of the tree from the attribute InvoiceFlightSeatQty, the formulas and rules
included in the left branch will also be triggered.

16

Evaluation tree

CustomerTotalPurchases

/

error(‘There is no more seats...”) InvoiceTotalAmount

oate 2 | @ \ / InvoiceDate

" FlightAvailableSeats InvoiceFlightAmount \

S— o \ / \ &Today
FlightFinalPrice

i P

Customer Total Purchases 5400.00 'nVOiceF”ghtseatQty

Invoice

Total Amount 5400.00

Flight

Flightid | Flight Avallable Seats Seat Qty Flight Final Price Flight Amount

- i e Subtract(InvoiceSeatQty, FlightAvailableSeats);

Error(“There are no more seats for sale”)
if FlightAvailableSeats < O;

As we've seen, when the value of the InvoiceFlightSeatQty attribute is
changed, the rule Subtract(InvoiceFlightSeatQty, FlightAvailableSeats) that
updates the number of seats available on the flight (FlightAvailableSeats) will
also be triggered again.

Consequently, by making changes to this rule, the value of the
FlightAvailableSeats attribute will be evaluated to see if the Error rule
indicating that there aren’t any more available seats should be triggered.

If the condition for triggering the error is met, everything done in the tree
since the change in the InvoiceFlightSeatQty attribute will be automatically
undone, and the database data will return to the state prior to the execution
of the error rule.

Reality

New receipt

Now let's see an example in which a rule is not always triggered at the
desired time. Let's suppose that immediately after invoicing a customer for
a number of flight seats purchased, we want to generate a receipt for
payment. If the customer is up to date with payments, then we generate a
new receipt;

18

Reality
Pending receipt
Name Type
- 4] Receiptopayment RecelptOfPayment
& b § ReceiptofPaymentid 1d
e ,.f S J:fvy ,\ ReceiptOfPaymentDate Date
s o ReceiptOfPaymentStatus Status
» Customerld i)
¥ CustomerName Name
| 1nvoice Invoice
__________ ? Invoiceld d
—— /a InvoiceTotalAmount Price
P ReceiptofPaymentinvoiceTotalPayed Numeric(4.0)
—_—
_——— <
. e
\ | S

Otherwise, we add the amount of this invoice to the previous outstanding
receipt. We have created a ReceiptOfPayment transaction. It is made up of
the receipt identifier, the date, the state (which is an enumerated domain
with the values pending and completed), the customer, and a second level
to record the invoices for which the payment receipt is issued.

19

Reality

Invoice

1

Date

|
Customer la I
| I
Customer Name Joseph | |
| v
Customer TorPurenases B : RECEIPTOFPAYMENT Table
Total Amount 0.00 |
|
Flight |
Flightid Flight Available Seats. Seat Qty Flight Final fnco Flight Amount
X 100 a}c 00 000
] IO 00 000
| where Customerld = &Customerld
0 000 000
where ReceiptOfPaymentStatus
0 000 000
g o o = Status.Pending

Then, when a new invoice is entered, the program searches if there is already
a receipt from that customer in Pending status.

20

Reality

Saloction List Invoice

Ia Date Customer id Invoice Total Amoun l
1 1 5400 00 v
2 100220 ' w0 RECEIPTOFPAYMENT Table

I 3 1 1 81000 I

l (| ———»

if exists

where Customerld = &Customerld
where ReceiptOfPaymentStatus

= Status.Pending

Receipt Of Payment

ELECT
Payment Ia 1
Payment Date 120 [&)
Payment Status P -
Customer id
Customer Name Joseph
Invoice
Invoice I Invoice Total Amount Total Payed
X 19 540000
X 2 9000.00
X 3 81000 0 I G
000 0
0.00
000
0.00)
000

If it there is one, a new line is added with this invoice.

21

Reality

Receipt Of Payment
» SEL T
/ | —
(C€57 | =gy Payment id 1
Payment Date u
e]
Selechon List Invoice 7,.71, S—
Payment Status —p Pending v
U Date Customer id Invoice Total Amoun I
l Customer Io
1 1 5400 00 w
2 100300 i 90000 RECEIPTOFPAYMENT Table Customer Name Joseph
3 1 1 81000
Invoice
NC ey Invoice id Invoice Total Amount Total Payed
if not exists L% > vt
000
000
where Customerld = &Customerld o
where ReceiptOfPaymentStatus o
= Status.Pending 550

Otherwise, the header and line are created, and the header is left in Pending
status.

Reality

Payment Id

Payment Date

Payment Siatus endng Status Completed
if InvoiceTotalAmount =

Cusiomer o ' ReceiptOfPaymentinvoiceTotalPayed

Customer Name Joseph

Invoice
Invoice Id |Invoice Total Amount Total Payed Naf
3| ReceiptOfPayment
I ? ReceiptOfPaymentid
p ReceiptOfPaymentDate
» ® ReceiptOfPaymentStatus

000 2 Customerld
2 ¥ CustomerName
o Invoice
00 ? Invoiceld
0.00 y ;, InvoiceTotalAmount
000 p ReceiptOfPaymentinvoiceTotalPayed

Type
ReceiptOfPayment
d

Date

Status

id

Name

Invoice

Id

Price
Numeric(4.0)

Then the customer comes to pay, so the employee opens the transaction
and changes the ReceiptOfPaymentinvoiceTotalPaid attribute for the

invoices the customer wants to pay.

The ReceiptOfPaymentStatus can only be changed to Completed if the
values of InvoiceTotalAmount and ReceiptOfPaymentinvoiceTotalPaid
match for all lines. Let’s assume that this change is made by the user, who
changes the value of ReceiptOfPaymentStatus, so it must be confirmed that
changing to Completed is not allowed if there is an unpaid or incorrectly

paid invoice.

23

Reality

Payment Id

Payment Date ==
ReceiptOfPayment X

Rules
Payment Status pleted v

1aError('Incomplete payments')
Sesmeris if ReceiptOfPaymentStatus = Status.Completed
and InvoiceTotalAmount <> ReceiptOfPaymentInvoiceTotalPayed
and Update;

Customer Name Joseph

Invoice

Invoice Id |Invoice Total Amount Total Payed
5400.00 7

il Not evaluated

We could think of placing the following error rule, conditioning it to be
triggered when we are updating a receipt, the status is Completed, and the
value of the attribute indicating what should be paid and the one indicating
what has been paid for a line do not match:

But... when will this rule be triggered?

Clearly if we access the transaction, change the status to Completed and
for a line we enter a different value than expected, it will be triggered. But,
what if we don't even access another line that has a O amount paid? Will the
rule be triggered?

The answer is no. When executing a transaction in Update mode we may
not want to modify the header and change only one line. In that case, what
will be triggered? The header will always be updated, and then only the
modified line. For it, everything will be triggered according to the
evaluation tree.

24

Reality
Payment ¢ Parm(ReceiptOfPaymentld);
Payment Date 11 [L
722)
Payment Status encing v (\22) —=
Nod -
Customer Name Joseph {
tavolos if InvoiceTotalAmount <> ReceiptOfPaymentinvoiceTotalPayed
&ok = false
Invoice id Invoice Total Amount Total Payed e'se
&ok = true

1 540000 400 | endif

9000.00 a
ReceiptOfPayment * X

3 810.00

Rules *
= &ok = CheckAllvalid(ReceiptOfPaymentId)
000 : if Update and ReceiptOfPaymentStatus = Status.Completed
0.00 on BeforeComplete; //equivalent with on AfterlLevel event

Error('Incomplete payments')
000 € if Update and ReceiptOfPaymentStatus = Status.Completed and not &ok
on BeforeComplete; //equivalent with on AfterlLevel event

How would we solve this case?

One solution is to call a procedure to which we send the receipt ID, once
we have waited for all the lines to be modified, and after these
modifications have been made in the database, but before the commit, so
we can undo them. This procedure runs through ALL the lines and makes
sure that none is left with a different value for the attributes we're interest
in.

Although for the Error rule it may seem that we do not need to condition
the BeforeComplete event since the &ok variable to be evaluated is
already conditioned, it is actually necessary. If we didn't condition the
error to exactly the same event, it would break the dependencies between
both rules.

Each triggering event has its own evaluation tree, which means that if we
condition many rules to the same event, it will order them at the time the
event occurs according to its dependencies, as we saw before.

Evaluation tree

(R) Default(InvoiceDate, &Today);

(R) Add(InvoiceTotalAmount, CustomerTotalPurchases);

(F) InvoiceTotalAmount = Sum(InvoiceFlightAmount)

(F) InvoiceFlightAmount = FlightFinalPrice * InvoiceFlightSeatQty

(F) FlightFinalPrice = FlightPrice * (1 - AirlineDiscountPercentage...)

(R) Subtract(InvoiceSeatQty, FlightAvailableSeats);

(R) Error(“There are no more seats for sale”) if FlightAvailableSeats < O;

CustomerTotalPurchases

error(‘There is no more seats...”) InvoiceTotalAmount

/ InvoiceDate
FlightAvailableSeats InvoiceFlightAmount \

\ / \ &Today
FlightFinalPrice

InvoiceFlightSeatQty

In sum, the rules and formulas stated in a transaction are usually
interrelated, and GeneXus determines the dependencies between them, as
well as the order in which they are evaluated.

26

Reality

Payment I
Payment Date
Payment Status
Customer Id

Customer Name:

Invoice
Invoice Id
x 1
x 2
X 3

Joseph

if InvoiceTotalAmount <> ReceiptOfPaymentinvoiceTotalPayed

&ok = false
Invoice Total Amount Total Payed else bt
540000 5400 endif
9000.00 -
™¥ ReceiptOfPayment® X
81000 Rules * |
S 1/:80k = CheckAllValid(ReceiptOfPaymentId)
000 : if Update and ReceiptOfPaymentStatus = Status.Completed
0.00 3 on BeforeComplete; //equivalent with on AfterLevel event
0.00

5t Error('Incomplete payments')
000 0 € if Update and ReceiptOfPaymentStatus = Status.Completed and not &ok
7 on BeforeComplete; //equivalent with on AfterLevel event

m cANCEL DELETE

Sometimes, the evaluation tree doesn't determine the order of execution
that we want: a clear example of this is the one we just saw, where we had to
delay the triggering moment of the procedure that checks the line records
and the subsequent error.

27

Detailed navigation

Navigation Report Detailed Navigation Report

R invoice X [Navigation View X I tvoce X 5] NevigstionView X

If you want to see in more detail the order of the evaluations triggered by
GeneXus, you can use the detailed navigation list.

Here is the difference between the two... let's see, for example, that in the
detailed navigation we are shown the rules and the moments when they
will be triggered, which doesn’t happen in the other case.

Detailed navigation can be useful in cases where we need to understand
exactly where a formula or rule is being triggered, but it usually takes
longer to specify, so we often don't need it.

28

Detailed navigation

I TravelAgency - GeneXus Tral

File Edit View Layout Build Knowledge Manager Window Tools Test Help

NEBIXDBINDCT, EE X » | Nettnvonment

& output
Show: General

-|| Release

e
Misc
Background Specification
Build With This Only
Call ree for Build
Concurent Generation
Concurrent Generation Instances

‘Concurrent Specification Instances [3

Specification Type

Detailed Navigation
Show detailed navigation

sovndos (]88 [if

gixias

a1
- B]

To enable it, go to the menu options Tools > Options, and in the Build

category activate the Detailed Navigation property.

29

GeneXus’

training.genexus.com
wiki.genexus.com

