
Evaluation Tree of Rule and Formula Triggering 

1



We know that the rules in a transaction are stated in any order and
GeneXus determines when each one is triggered. This is sometimes
confusing for developers, because they feel they are no longer in control.

But this is actually an advantage. Developers should only focus on
declaring the logic and GeneXus will automatically infer where and when
each ruleshouldbe triggered.

2



To explain this topic, we will use the Invoice transaction that has a second
level (Flight), to represent the flights included in the invoice.

We are going to focus on this transactionand on triggering its rules.

3



Note that in the Flight transaction we have added the
FlightAvailableSeats attribute, which will be used to record the seats
available in each flight. The number of seats available will decrease every
time that an invoice is issued to a customer who has purchased a number
of seats in the flight.

We have added it, then, at this level. It will be an inferred attribute.

4



In the Customer transaction we've also added the
CustomerTotalPurchases attribute to record the total amount spent by
the customer in flight ticket purchases. Wealso added it to our transaction
as an inferred attribute.

The attributes InvoiceTotalAmount, FlightFinalPrice, and
InvoiceFlightAmount of the Invoice structure have been defined as
formulas.

5



In the Invoice transaction, we have defined the following rules to specify
its behavior:

The Default rule, which initializes the invoice date attribute with today's
date; the Subtract rule, which decreases the number of available seats on
the flight according to the number of seats purchased on the invoice
note that it will be decreasing a Flight table attribute: Here,
FlightAvailableSeats is inferred; the Error rule displays an error message if
the flight no longer has available seats; and the Add rule adds the invoice
total to the total purchases made by the customer again, an attribute
included in a tableof the extended table, Customer.

6



In short, we have all these rules and formulas defined in the Invoice
transaction:

The big question is how does GeneXus know in what order to trigger
them, and when to trigger them and whennot to?

Of course, first there is a natural order that corresponds to the ordering of
the attributes on thescreen (fromtop to bottom and fromleft to right).

7



A rule or formula is triggered as soon as the required information is
accessed. For example, the Default rule only needs the value of the
&Today variable and to know that it is in Insert mode. That's why as soon
as we open the screen in Insert mode we already see the value in the field,
even though we haven't even reached it (we are barely positioned on
InvoiceId).

8



Let's think about what happens with the formula of the first level:
InvoiceTotalAmount, which is a sum of a second-level attribute. Since the
Sum formula needs only the InvoiceFlightAmount attribute, it will be
triggered for the header even before the first line could be entered, giving
0.

9



But then, as we enter lines, it will be triggered again for each one. But what
happens if we access the transaction in Update mode and, for example,
change something in a line that does not modify the InvoiceFlightAmount
at all? (in this case, we have any attributes to be modified that
modify that value, because the only two editable attributes are the line ID,
which cannot be changed because it is part of the primary key, and then
the InvoiceFlightSeatQty, which does modify the value of
InvoiceFlightAmount. However, imagine that there were one; for example,
that it must be indicated if a passenger has diabetes, and the line in
question said Yes, and now we want to change it to No). Obviously, in that
case, the header formulawould notbe recalculated.

10



This is also obvious to GeneXus, which internally extracts the existing
dependencies between places assumed by the controls on the screen, the
rules and formulas, to build a dependency tree (known as evaluation tree)
that will determine which rules and formulas will have to be triggered
again when changes aremade to attributes on the screen. In this example
it will be as shown below:

11



For example, note what happens with the attribute InvoiceFlightSeatQty.
On it depends the update using subtract of the attribute
FlightAvailableSeat, on which, in turn, the triggering of the error rule
depends. For this reason, the condition of the error rule must be written
knowing that, because of this dependency, the subtract will always have
already been executed and that is why the condition 'less than zero' is
placed. Remember that, as we have already studied, if there are negative
entries, everything done in the tree that led to this error will beundone.

At the same time, the updating of the InvoiceFlightAmount formula also
depends on InvoiceFlightSeatQty, as does that of the header,
InvoiceTotalAmount, on which the updating of the client's total purchases
depends.

We can imagine that the tree is executed in a bottom-up manner. That is
to say, every time an attribute value is updated, all the rules and formulas
that depend on this attribute (and that are located upwards in the tree) are
executed.

12



Let's continue with the previous example:

If the number of seats in an invoice line (InvoiceFlightSeatQty) is updated,
since this attribute is part of the formula that calculates the cost of the
flight (InvoiceFlightAmount), this formula will be triggered again.

13



When it is triggered again, the formula corresponding to the total amount
of the invoice (InvoiceTotalAmount) will also have to be triggered again.

14



Lastly, changing the total also implies having to trigger the rule
Add(InvoiceTotalAmount, CustomerTotalPurchases) because the
customer's total purchases have to beupdated.

15



In addition to triggering all the formulas and rules included in the right
branch of the tree from the attribute InvoiceFlightSeatQty, the formulas
and rules included in the leftbranch will also be triggered.

16



As seen, when the value of the InvoiceFlightSeatQty attribute is
changed, the rule Subtract(InvoiceFlightSeatQty, FlightAvailableSeats)
that updates the number of seats available on the flight
(FlightAvailableSeats) will also be triggered again.

Consequently, by making changes to this rule, the value of the
FlightAvailableSeats attribute will be evaluated to see if the Error rule
indicating that there any more available seats should be triggered.

If the condition for triggering the error is met, everything done in the tree
since the change in the InvoiceFlightSeatQty attribute will be
automatically undone, and the database data will return to the state prior
to the execution of the error rule.

17



Now let's see an example in which a rule is not always triggered at the
desired time. Let's suppose that immediately after invoicing a customer
for a number of flight seats purchased, we want to generate a receipt for
payment. If the customer is up to date with payments, then we generate a
new receipt;

18



Otherwise, we add the amount of this invoice to the previous outstanding
receipt. We have created a ReceiptOfPayment transaction. It is madeup of
the receipt identifier, the date, the state (which is an enumerated domain
with thevalues pending and completed), the customer, and a second level
to record the invoices for whichthepaymentreceipt is issued.

19



Then, when a new invoice is entered, the program searches if there is
already a receipt from thatcustomer in Pending status.

20



If it there is one, a new line is added with this invoice.

21



Otherwise, the header and line are created, and the header is left in
Pending status.

22



Then the customer comes to pay, so the employee opens the transaction
and changes the ReceiptOfPaymentInvoiceTotalPaid attribute for the
invoices the customer wants to pay.

The ReceiptOfPaymentStatus can only be changed to Completed if the
values of InvoiceTotalAmount and ReceiptOfPaymentInvoiceTotalPaid
match for all lines. assume that this change is made by the user, who
changes the value of ReceiptOfPaymentStatus, so it must be confirmed
that changing to Completed is not allowed if there is an unpaid or
incorrectlypaid invoice.

23



We could think of placing the following error rule, conditioning it to be
triggered when we are updating a receipt, the status is Completed, and
the value of the attribute indicating what should be paid and the one
indicating whathas been paid for a line do notmatch:

But... when will this rule be triggered?

Clearly if we access the transaction, change the status to Completed and
for a line we enter a different value than expected, it will be triggered. But,
what if we don't even access another line that has a 0 amount paid? Will
the rule be triggered?

The answer is no. When executing a transaction in Update mode we may
not want to modify the header and change only one line. In that case,
what will be triggered? The header will always be updated, and then only
the modified line. For it, everything will be triggered according to the
evaluationtree.

24



How would we solve this case?

One solution is to call a procedure to which we send the receipt ID, once
we have waited for all the lines to be modified, and after these
modifications have been made in the database, but before the commit, so
we can undo them. This procedure runs through ALL the lines and makes
sure that none is left with a different value for the attributes interest
in.

Although for the Error rule it may seem that we do not need to condition
the BeforeComplete event since the &ok variable to be evaluated is
already conditioned, it is actually necessary. If we didn't condition the error
to exactly the same event, it would break the dependencies between both
rules.

Each triggering event has its own evaluation tree, which means that if we
condition many rules to the same event, it will order them at the time the
event occurs according to its dependencies, as we saw before.

25



In sum, the rules and formulas stated in a transaction are usually
interrelated, and GeneXus determines the dependencies between them,
as well as the order in which they are evaluated.

26



Sometimes, the evaluation tree doesn't determine the order of execution
that we want: a clear example of this is the one we just saw, where we had
to delay the triggering moment of the procedure that checks the line
records and thesubsequenterror.

27



If you want to see in more detail the order of the evaluations triggered by
GeneXus, you canuse the detailed navigation list.

Here is the difference between the two... let's see, for example, that in the
detailed navigation we are shown the rules and the moments when they
will be triggered, which happenin the other case.

Detailed navigation can be useful in cases where we need to understand
exactly where a formula or rule is being triggered, but it usually takes
longer to specify, so weoften don'tneed it.

28



To enable it, go to the menu options Tools > Options, and in the Build
category activate the Detailed Navigation property.

29



training.genexus.com

wiki.genexus.com

training.genexus.com/certifications

30


