Effects of Adding an Attribute to a Table that Already
Contains Data

GeneXus

AirportTrn

B9 Airport X v

| Structure | % Web Form | Rules | Event

Name Type Description Formula Nullable

o T A
¥ Aportid 1d Arrport Id No
§ Arportiame Name Airport Name No
& Countryld Id Country Id No
¢ CountryName Name Country Name

Let's suppose that in our KB for the travel agency we have the Airport
transaction in the following state and with these attributes. Also, in this
transaction we want to add the Countryld and CountryName attributes of
the Country transaction, so that each airport has an associated country.

Considering that the Airport table already has records before the
reorganization, what value will the Countryld attribute have?

Nullable YES

Name Type Description Formda Nullable
Pt —
¥ Arporud
P Arportiame
Countryld
¢ Countryhame

Arport 1d «
Arport Name No
Country 14 Yes
Country Name

"]
Name
"]
ame

Nullable NO

Name Type Description Formula Nullable
% arport
¥ Amportd

Arport id

d
P Arporthame Name Arport Name
Countryld "] Country 14
¢ Countryame e Country Name

§§3

Here we have two options, and it will depend on how we configure these
Countryld attributes.

If we set Countryld to accept null values, when we reorganize and
GeneXus adds this attribute in the table, the records that were already
there will be left with this attribute as null.

Now, if we indicate in the transaction that that attribute does not accept
nulls, what will happen? We see that when we reorganize it launches a
warning, indicating that this attribute does not accept null values and does
not have an initial value, so it will assign a default value to the Countryld
attribute.

A record will be created in the table where this attribute is the primary key
and in the table where we add it as a foreign key; it will be assigned a value
O if the attribute is of numeric type, empty if it is of character type and
False if it is of Boolean type.

In this case, a new record will be created in the Country table with
Countryld = 0 and empty CountryName. And for all the records previously
entered in the Airport table, that value will be assigned to the new
Countryld attribute.

If a country with ID=0 is registered, it will be referenced.

We will always have the option of going record by record and changing
this value to the one we want. Or create a procedure that runs through all
the airports with a For Each, and modifies Countryld according to the

conditions that we specify.
We could also assign to the new Countryld attribute, an initial value that we know already
exists in our database, as we will see in a moment.

T8 Aipon X
Structure
MName Type Desuiplon Formua Nullalle
=77 rurpect Arport Arpart
¥ airportid " Arport I¢
@ Airportiome rare Alrport Name No
A Courtryld k Country ¢ He
o Courtryiarne NaTe Country Name
® Mirportintornatonal #oclcan Arpart Intarnatonal No
] 1 Id 3 0

Name he arport of Braz Name The airport of Fras Name

Country I8 1 Country id : Country I

Country Name Brazi Country Name France Country Name

international International International

Let's see the following case.

Within the Airport transaction, we want to add an attribute that records
whether the airport entered is international or not.

For this we add the attribute Airportinternational of Boolean type.
Suppose we want the value to be true by default. To this end, we create a
Default rule.

When we reorganize, we see again a Warning, which tells us that the
attribute we have just created does not accept null values and has no
initial value, so the empty value will be used as default.

If we look at the records previously entered in the Airport table, we see
that in all of them it assigned a false value to this new attribute, since it is
the default value assigned to this type of data.

If we want to enter a new record from the transaction, we see that by
default it is set to true, as we assigned it in the rule, but it does not apply to
the records we already had.

When this attribute is created, how can we have all previous records set to
true? Through the Initial Value property.

Initial Value Property

B Aot X
tore | § wet [Rutes | £vene

1] //efault(Airportinternational, TRUE);|

M Ao X

| - <z ' \
Structure | © ¢ 22l W Filter)
Name Type Desuiption
=) t A Arport
=~UR A Arport Arpo
po g Name Airportinternational
¥ Arportid e Avport 16
¥ Airportiame \ame Arport Noms
& Courtryld K Country 0
¢ CourtryNeme Name Country Nan
* Airportintornatonal Rooloan Arport Intar Based on (none
Data Type Boolean

T -

If instead of using the Default rule, we set the Initial Value property of the
attribute to true, it will not only apply to new records, but all existing ones
will take that value.

This is one of the differences between using the Default rule and using the
Initial Value property.

Default Rule vs. Initial Value

Default Rule:
For records already entered in the database, the new attribute takes a default value

It belongs to the transaction

Initial Value:
For records already entered in the database, the new attribute takes the value of the Initial Value property

It belongs to the attribute

Another difference is that the default rule is specific to the transaction, not
the attribute. As for the Initial value property, it belongs to the attribute.
And it will apply anywhere it is used, including transactions, procedures,
BC, etc.

o » X

Aspont* X
Structure *

Name Type

Axport

Airport

Name Parts Orly Alpord

Country Name France

Let's go back for a moment to the case where we added Countryld to the
Airport table; let's see what would happen if instead of doing it as we did,
we had assigned an initial value. For example, suppose we know that all
the airports already entered are from the country France. Since France has
ID 2, we assign this value in the Initial Value of the Countryld attribute.

When running it we see that the Airport table is reorganized and added to
the Countryld attribute, and when viewing the data we see that, in all the

records previously entered, Countryld took the value 2, corresponding to
France.

Even when we want to add a new record in Airport, Countryld will be
initialized by default with the value 2, and we can modify it if we wish.

And what would happen if we had put in the Initial Value of Countryld a
value that does not exist in the country table? For example, 20.

o +

R - Intal value 20

Id Name

Name: Pans Charles de Gaulle Arport

At runtime we see that, in the previously entered records, the Countryld
attribute is assigned the value 20, even though we did not have any
country with this ID. What GeneXus did in this case in order to assign
Countryld the value 20, was to create a country in the Country table with
ID 20 and empty name. Otherwise, there would be serious referential
integrity conflicts.

If at some point we no longer want this attribute to be initialized with a
value, we can modify this property and remove the value we entered. This
will no longer impact the records we have entered.

It is important to remember that the initial value is assigned to the new
attribute when the table is reorganized. If we didn’t assign an initial value
to the attribute when it was added and the reorganization is executed,
then it will be necessary to run through all the records to assign a value to
it.

As we also mentioned, when creating a new record, if there is an initial
value assigned, the new record will be created with the attribute at that
value.

Airport Trn
Name Type Description Formula Nullable
T Airport
¥ Arportid i Airport Id
;: AlrportName Name Alrport Name No
2 Countryld Id Country Id No
¥ CountryName Name Country Name
* Airportinternational Boolean Airport International No
Flight Flight Flight
¥ Fughtid %) Flight 1d
¥ Airlineld W Airline 1d
¥ AirineNome Name Airline Nome
:, FlightFinalPrice Price Flight Final Price FlightPrice * (1-AirlineD
; FhightCapaaty Numeric(4.0 Flight Capacaty count(FlightSeatiocation)
AirportFlight Table
[Aipot X BB AirportFlight X v
Name Type Description Formula
o B
¥ Arportid d Arport 1
§ Fighud i Fight Id

Now suppose we want to record from the Airport transaction the flights in
each airport, so we enter a second level with the following attributes of the
Flight transaction.

Since at the database level this structure does not generate changes
within the Airport table, it does not impact previously entered records. A
new AirportFlight table is generated and it will be empty.

Airport Trn
Structure *
Name Type Description Formula Nullable
T8 Arport Airport Airport
¥ Arportid d Airport Id
Yy’ ArportName Name Alrport Name No
2 Countryld d Country Id No
¥ CountryName Name Country Name
& Asrportinternational Boolean Airport International No
; AirportFlightCapacity Numeric(4.0) Airport Flight Capacity sum({FlightCapaoity)
Fhight Flight Flight
¥ rughud) Flight 1d
¥ Airlineld d Airline Id
¥ AirlineName Name Airline Name
;' FhghtfinalPnce Price Flight Final Price FlightPrice * (1-AirlineDis.
;, FlightCapaaty Numeric(4.0) Flight Capacity count{FlightSeatLocation);

Let's now assume that in the Flight transaction we have an attribute that
counts the number of seats entered for that flight. Also, from Airport we
want to know the total number of seats, adding up all the flights that have
been entered in that airport, so as to obtain a total capacity.

For this, we have already created a formula attribute in the first level of the
Airport transaction, with the SUM formula, which will add the value of the
FlightCapacity attribute of the flights entered for each airport.

As we know, the attributes defined as a global formula are not stored in
the database; instead, their value is calculated every time it is needed, but
this data is not persisted.

Suppose you frequently need to access and work with this data. As it is
calculated at runtime, if there are many records to be run through (for
example, if there is a large number of flights entered), it can severely
impact performance.

To solve this situation, GeneXus allows us to define a global formula
attribute as redundant. This means that it will no longer be a virtual
attribute; instead, it will be stored in its associated table and GeneXus will
keep the knowledge that the attribute is a formula and how to calculate its
value.

In this way, when executing the transaction that contains an attribute with
a redundant formula, the formula will be evaluated and calculated, and the
result will be stored in the database.

10

Then, when we need to query or work with that attribute again, GeneXus will retrieve the
stored value from the database instead of spending time and effort to perform the
calculation.

Redundant attribute
B Apon* X B Fight X
Structure *
Name Redundant Type Description Formula Nullable
_; Alrport Alrport Alrport
¥ Arportia i Airport 1d
) AlrportName Name Airport Name No
2 Countryld d Country Id No
¥ CountryName O Name Country Name
® Asrportinternatonal Boolean Airport International No
Muporragcapecy] A) Alrport Fhght Capaciy sum(FightCapacty)
Fiight - Flight Fhight
¥ Fighud] Flight 1d
¥ Airlineld Id Airline Id
¥ AirlineName : Name Airline Name
; FlightFinalPrice Price Fhight Final Price FlightPrice * (1-Airkin
ay FightCapacty O Numeric(4.0) Flight Capacity count(FlightSeatLoca...

To define this attribute as redundant, we right-click on the column
headers row, select column chooser and there we see all the columns that
we can include in the transaction editor. We choose redundant and drag it
to the editor.

By means of a check box, it gives us the option to mark the attribute as
redundant. We select it and run it again.

It will ask us to reorganize the database, since as we saw, the attribute we
just marked as redundant will be added to it.

When a new Airport record is entered, the formula is triggered as usual in
the transaction, adding up the total number of flights entered. And when
confirming this value is also stored in the database.

What will happen to the Airport records that already existed in the
database? In those records, what value will this attribute have in the table?
When doing the reorganization and adding this attribute, GeneXus runs
through the previously entered records one by one, triggering the formula
and saving its value in the table. When viewing the previous records, the
new attribute appears with its corresponding value, which as we said, is
already stored in the database.

So far we have briefly seen how adding new attributes - whether they are

inferred attributes, attributes with a redundant formula, or with a value in
the Initial Value property - affects a transaction with previous records.

n

For more information, you can visit our Wiki.

n

GeneXus

training.genexus.com
wiki.genexus.com

training.genexus.com/certifications

