
Dynamic Transactions

So far, we've seen that in every transaction object, a table is created for 
each level to store its data and retrieve it later.



Transaction with Data Provider to initialize data

Transaction Tables

DP

(Used to Populate Data)

We have already seen that we can associate a Data Provider with a
transaction in order to populate its tables with data.



Transaction uses:
Insert, Update, Delete data
Navigate (retrieve) data

Transaction with Data Provider to initialize data

Transaction Tables

DP

(Used to Populate Data)

In that scenario, the Data Provider is used only for initialization. Then the
transaction will behave normally; that is to say, it will access its tables as
usual to retrieve the data, and will allow inserting, updating and
deleting records as usual.

Note that the Update Policy property takes the Updatable value to
enable these updates and this behavior.

But we can also change this behavior and prevent the data
from being updated. That is, once the tables with data have been
initialized, they cannot be modified and no new data can be added.
To do this you must change the update policy, which by default takes
the Updatable value, and set it to Read only.



Transaction with Data Provider to retrieve data 

Transaction Tables

Transaction uses: 
Insert, Update, Delete data 
Navigate (retrieve) data

Transactions views

We will now see that it is possible to continue using the transaction as
usual but without storing the data in the associated tables. In short, we
will have a case of transactions from which no tables are created in the
application's database.

We can achieve this by indicating that the Data Provider associated with
the transaction will be used to Retrieve data.



Transaction with Data Provider to retrieve data

Transaction

Transaction uses:
Insert, Update, Delete data 
Navigate (retrieve) data

?
Transactions as 

Insert, 
Update, 
Delete (Used to Retrieve 

Data)

DP

But if no tables are created, somehow we will have to specify where the
information will be retrieved from every time the user wants to browse
his or her data. In addition, we will have to indicate what to do when the
user enters data on the screen and wants to insert, update or delete it
from the corresponding tables.

To Insert, Update or Delete we will have to explicitly program three
events with these names.

To retrieve the data, we will have to program the Data
Provider associated with it.
Just like data population, the Update Policy property will allow us to
indicate if the transaction can be used only to retrieve information, or
also to update it.



see an example.

Let's suppose that we have two standard transactions:
• Invoice, to represent the invoices issued by the travel agency to its
clients for purchasing tickets, trips, and so on. These invoices are
identified with a sequential number.
• Receipts, to represent the receipts issued by the travel agency to its
clients for their purchases. Receipts these also identified with
sequential numbers.

The accounting system of the Travel Agency needs to handle these
invoices and receipts as Documents in general, to then be able to
handle these Documents in Accounting Movements.

First, we create the Document transaction, with an identifier made up
by DocumentType and DocumentId. Why do we need a compound
identifier? In order to determine, for example, whether we are dealing
with invoice 1 or receipt 1.

This transaction will be like a that will unify the information
contained in the Invoice and Receipt tables. That is to say, it will not
create a table to contain the data; instead, it will take it from the tables
corresponding to Invoice and Receipt.

Invoice
InvoiceId*
InvoiceDate
InvoiceTotal

Receipt
ReceiptId*
ReceiptDate
ReceiptTotal

No DOCUMENT table

Transaction uses:
Insert, Update, Delete data
Navigate (retrieve) data

Document
{

DocumentType*
DocumentId*
DocumentDate
DocumentAmount

}



Document
{

DocumentType*
DocumentId*
DocumentDate
DocumentAmount

}

To this end, we set its Data Provider property to True, and indicate
that we will use this Data Provider to receive information.

After that, GeneXus will automatically understand that the table
associated with the transaction must not be created because this
Data Provider will be used to indicate from where to obtain the data.
In this case, it will be from the INVOICE and RECEIPT tables
associated with the corresponding transactions.

Let's look at the source of the Data Provider associated with this 
transaction

We have a Document group to retrieve all the documents that are 
invoices, and another group to retrieve all the documents that are 
receipts.

From now on, every time the transaction is run to navigate its data,
this Data Provider will be run to load the corresponding information
on the screen, in a completely transparent way for both the
developer and the user. Nobody will notice that the transaction

have a table.

7



Document
{

DocumentType*
DocumentId*
DocumentDate
DocumentAmount

}

Dynamic transaction as a base transaction: Documents list

After this, the dynamic transaction is used as any other transaction.
For example, to print all the documents ordered by date in
descending order, we can create a procedure with a For Each
command similar to this:

It is very interesting to note that in this For Each command Document
is declared as a base transaction. And from this, since the attributes
mentioned in the printblock belong to Document, GeneXus
determines that the base table of this For Each command is
Document.

But Document does not exist as a table in our database but is a view
through the Data Provider.

8



Database update: Insert, Update and Delete

Document
{

DocumentType*
DocumentId*
DocumentDate
DocumentAmount

}

Events

Transactions are not only used to retrieve their data but also to update
it. How do we go about it, since we don't have a table associated with
this transaction?

Let's look at the Update Policy property. If this property is set to
the events Insert, Update and Delete will be offered in the

transaction to program how to insert, update and delete the data
entered by the user on the screen. Only the developer will know what to
do in each case with this information.

These actions will be enabled depending on the reality.

Look at the Form of the transaction. When the user has finished
completing the fields in this screen to insert a new document and has
pressed the Confirm button, we will have to insert a new record in the
Invoice or Receipt table as appropriate, depending on the value entered
in the DocumentType attribute.

So let's look at the Events sector of the transaction. We have
programmed the Insert event, using the Invoice and Receipt variables
based on the Invoice and Receipt Business Component data types,
respectively.

Note that we could have used the Save method instead of the Insert
method of the Business Component. We don't need to write the
Commit command because we're in the Document transaction that still
has the Commit on Exit property set to Yes by default. That is to say, it
will implicitly run the Commit.

9



see what happens if we have rules stated at the dynamic
transaction level.

When are they triggered? What happens with the evaluation tree?

Both the evaluation tree and the rule triggering moments are the
same as if we were dealing with a regular transaction.

Rules? Triggering events? 

❖ They are specified and triggered just like in a standard transaction 

❖ Evaluation tree and triggering moments are identical 

Document
{

DocumentType*
DocumentId*
DocumentDate
DocumentAmount

}

Rules



Messages triggered in the Business Components

Document
{

DocumentType*
DocumentId*
DocumentDate
DocumentAmount

}

Events

As for the success or failure messages triggered during the
execution of the Business Components Invoice and Receipt, we can
also retrieve them.

To this end, we set the Messages variable, based on the Messages
data type, a collection, as a parameter in each of the Insert, Update
and Delete events at the transaction level.

These messages are displayed in the form of the dynamic transaction
in a completely transparent way.

11



Referential Integrity ?

Movement
{

MovementId*
DocumentType
DocumentId
DocumentDate
DocumentAmount

} 

Document
{

DocumentType*
DocumentId*
DocumentDate
DocumentAmount

}

MOVEMENT table

FK?

NO table

Moving forward with this example, remember that we have said that
the Travel Agency's accounting system needs to handle all
documents as accounting movements.

Since the DOCUMENT table associated to the Document transaction
will not be created, we can assume that then in the MOVEMENT table
associated with the standard Movement transaction, the pair of
attributes made up of DocumentType and DocumentId cannot
constitute the foreign key that they should.

So what's going to happen with the referential integrity check? Can
GeneXus make it?

Since referential integrity must be ensured, GeneXus generates SQL
triggers to do so. Therefore, it could be said that the pair
DocumentType and DocumentId make up a foreign key in
Movement.

In sum, in Document it will not be possible to delete invoices or
receipts that have an associated movement. In addition, it will not be
possible to add a Movement that doesn't exist as a Document.

12



Summary

1. Data Provider: True

2. Used to: Populate Data

3. Update Policy: UpdatableTransaction Tables

DP (to initialize)
It allows (or not) making the usual 
updates (on the transaction tables)

1 Data Provider: True

2. Used to: Retrieve Data

3. Update Policy: UpdatableTransaction Views

DP (to retrieve)
It allows (or not) making updates, but 
they have to be programmed in 
special events: Insert, Update, 
Delete 

Let's review the concepts we have learned:

When the Data Provider property at a transaction level takes the True
value, GeneXus asks us what we are going to use it for.

If we indicate that we will use it to populate the table with data, then
the transaction will generate its corresponding associated tables.
Through the Update policy property we will allow, or not, the updating
of records in the usual way.

When the Data Provider property associated with a transaction is set
to True, and we indicate that we are going to use it to receive data,
GeneXus understands that the transaction will not have any
associated tables and that it will make a view from that Data Provider.

Then, according to the value that we indicate in the Update policy
itself, the corresponding events should be programmed to allow the
insertion, modification or deletion of records in the corresponding
tables.

13



More about Dynamic Transactions

• Other use cases: 

Selection

Data grouping

Temporary relations

• More examples of use of dynamic transactions

http://wiki.genexus.com/commwiki/servlet/wiki?28062,Dynamic%20Transactions.

Finally, it is worth mentioning that we have seen a single use case of
dynamic transactions, but there are multiple cases, such as Selection,
Data Grouping and Temporary Relationships that we will address in
other courses.

You can access more information using the link on the screen.

14



training.genexus.com
wiki.genexus.com


