
………..……………………………………………………

Logic of query to database with GeneXus

Determining base tables

1

………..……………………………………………………

extended table

BaseTable

We shall focus on the For Each command. When this command has a defined base
transaction, then the problem is already solved. The question is: what happens
when it doesn’t?

How should the base table be found? GeneXus searches for the attributes existing
in all these places, and based on them it searches for an extended table that
contains them all.

2

………..……………………………………………………

BaseTable2

BaseTable

BaseTable1

For example, if the attributes that appear in these places are from these tables,
which will be the base table of the For each?

It will be this one, because its extended table contains them all …

3

………..……………………………………………………

BaseTable2

BaseTable

BaseTable1

It could be possible to argument that, if the choice was this other one as base
table, its extended table would also contain all the attributes, so, it becomes
necessary to add a condition: it should be the minimum table of all the extended
tables that contain all the attributes.
That solves the problem, and the table will be this one.

4

………..……………………………………………………

BaseTable2

BaseTable

BaseTable1

BaseTable1

Obviously, in the case that an attribute of this table appeared, then the base table
would be a different one.

Consider it in this example…

5

………..……………………………………………………

BaseTable2

BaseTable

for each
order TripDate
where CategoryName = "Monument"
where CountryName = "France"

print PB1 //AttractionName
endfor

There is no base transaction. This attribute is here, this other one is here, and this
other one here; and this other one appears in the main code. The navigation list
will show…

6

………..……………………………………………………

BaseTable2

BaseTable

for each
order TripDate
where CategoryName = "Monument"
where CountryName = "France"

print PB1 //AttractionName
endfor

You can see that it is in fact selecting TripAttraction as base table.

7

………..……………………………………………………

BaseTable2

BaseTable

for each
order TripDate
where CategoryName = "Monument"
where CountryName = "France"

print PB1 //AttractionName, HotelName
endfor

Trip.Attraction

But, what happens if there is no extended table containing them all?

For example, if you add HotelName in the printblock, GeneXus will show an error
and it will not be possible to generate the object.

Note that if, for example, TripAttraction had been specified as base table, then
instead of an error there will be a warning about the HotelName attribute being
unreachable, but the base table will be perfectly determined by the base
transaction.

8

………..……………………………………………………

BaseTable2

BaseTable

for each
order TripDate
where CategoryName = "Monument"
where CountryName = "France"

print PB1 //AttractionName
endfor

Grid with base table
(with base table)

For each

Data Provider Group
(with base table)

Data Selector

Formula

All this related to a For each also applies to a Grid (with base table), as well as to a
group of Data Providers. And the same goes for a Data Selector executed as an
independent query, or a formula.

9

………..……………………………………………………

BaseTable2

BaseTable1

Now, what happens in the case of a nested For each?

The base table of the main For each is determined without taking the nested For
each into account at all. That is to say, as if it didn’t exist in the main code.

How is the base table of the nested For each determined? It is always defined after
determining the one of the For each that contains it.
The case that should be analyzed is when there is no base transaction.

10

………..……………………………………………………

BaseTable2

BaseTable1

It could be considered in a similar manner, taking the attributes found here…

11

………..……………………………………………………

BaseTable1

for each
…
for each

…
endfor
…

endfor

BaseTable2

BaseTable2

=

(suppose, these ones)… and finding the minimum extended table that contains
them, regardless of the main For each.

However, it will not be exactly that way. In fact, from all the attributes extracted
from the places already known, the first thing to do is remove all those that are
also part of the extended table of the main For each, to operate only with the ones
remaining, in order to find the minimum extended table that contains them.

In this case, when you remove, from the set of attributes to be calculated, those
that belong to the main’s extended table, then you will have none left! Empty set.
In such case, the base table of the nested For each will be the same as the one of
the main For each, and it will then be a control break.

12

………..……………………………………………………

for each
order CategoryName
where TripDate > &today
where AttractionName > ‘N'

print PB1 //CategoryName
for each

print PB2 //CountryName, CityName
endfor

endfor

BaseTable1

BaseTable2

=

Here is a particular example. Whether Trip.Attraction is specified as base
transaction for the main For each, or not, due to the attributes involved, the base
table will be TripAttraction in any case. And for the nested For each, since the
attributes used in it are from this table and from this other table, its base table
would be this other one… but it so happens that it is located in the main’s
extended table, so GeneXus will select the same one, TripAttraction, as its base
table.

And a control break will take place by CategoryName.

13

………..……………………………………………………

for each
order CategoryName
where TripDate > &today
where AttractionName > ‘N’

print PB1 //CategoryName
for each

order HotelName
print PB2 //CountryName, CityName

endfor
endfor

BaseTable1

BaseTable2

BaseTable2

=

If, for instance, you added an order by HotelName, then things would be different,
and the base table of the nested For each will be Hotel.

Note that here, from these three attributes of the For each, you will have to
remove this one and this one for the calculation of the base table, because they
are already in the extended table of TripAttraction. Only HotelName remains for
calculating the minimum extended table that contains it.

14

………..……………………………………………………

for each
order CategoryName
where TripDate > &today
where AttractionName > ‘N’

print PB1 //CategoryName
for each

order HotelName
print PB2 //CountryName, CityName

endfor
endfor

BaseTable1

BaseTable2

// HotelName, AttractionName

This is so because, in the nested For each you could possibly use attributes from
the main’s extended table, to do something with the perfectly determined values
of those attributes.

For example, imagine that, in the print block of the nested For each, you add
HotelName, which makes no difference, and also AttractionName. Neither
CountryName, nor CityName or AttractionName will participate in determining the
base table of the nested For each because they are in the main’s extended table. It
is clear that the base table will be Hotel.
What will be executed? For each TripAttraction going through the filters there will
be one value of AttractionName, and that value will be the one shown for each
record of the nested For each.

Likewise, for all hotels in the city of the trip attraction, that country and city will
come up along with the name of the hotel and the name of that attraction; it will
always be the same one for all these records.

15

………..……………………………………………………

BaseTable2

BaseTable1

It is important to bear in mind that the attributes in these places will not take part
in determining the base table of the respective query.

Of course, it is possible to specify base transaction for one and not for the other.

After, and only after, the base tables have been determined, GeneXus will solve
the navigation, and more specifically the conditions that it will implicitly impose.
For example…

16

………..……………………………………………………

BaseTable2

BaseTable

BaseTable1

Parm(in: attribute)

Remember that, if no access to a particular table of the extended table is required
in the For each –for example, suppose that only attributes of these tables are
used-, then the access will be to these tables of the extended table and not to all
tables. These two will not be accessed.

Therefore, if, in the parm rule you receive –in an attribute of one of them– that
automatic filter, based on equality, will not be applied to the For each. And that is
because the implied conditions are placed AFTER the navigation has been defined.

17

………..……………………………………………………

CONTROL
BREAK

BaseTable1 = BaseTable2

JOIN

BaseTable1 ≠ BaseTable2

CARTESIAN
PRODUCT

1-N relationship

yes no

The other clear example: the specific navigation is defined only after the base
tables have been determined. This means that, first, you must know the base
tables in order to determine the case. For example, finding if there is a (direct or
indirect) 1 to N relation or not.

18

………..……………………………………………………

BaseTable2

BaseTable1

BaseTableN

…

And what about determining the base table of a nested For each at N level of
nesting?

It is logical that it may use attributes of the extended tables from its ancestors, and
not only from the parent. In addition to parent-child inferences, there are also
grandparent-child inferences. In fact, inferences take place with any ancestor.

And control breaks are only at the parent level. What might happen is that the
parent level could also be control break with its own parent.

And this will be the end of this topic.

19

………..……………………………………………………

training.genexus.com

wiki.genexus.com

training.genexus.com/certifications

20

