
In this video, we will study how to work with the Design System object to add
a design to our application. We will see, among other things, how to use
tokens, styles, and properties, as well as how to incorporate fonts and work
with light and dark modes.



Just to do some tests, let's create a Panel named MyHome, and set the Main program
property to True in order to run it easily as it won't have any dependencies.

Let's add a table, and 3 elements inside it: 2 textblocks, and a button labeled "CONTACT US".
Let's change the name of the control of the first textblock to TextblockTitle... and the second
one to TextblockDescription.

2



Let's go to the events and add ClientStart, which is going to be executed when the Panel
opens. Let's load the paragraphs separately so we can add the new line, which allows us to set
the spacing between them.

3



If we edit one of the TextBlock controls we added, we can see that it has the Class property,
which by default has the TextBlock value.

These class definitions, which will contain the characteristics of each layout element, will be
defined and centralized in one object: the Design System.

4



Every KB is created by default with a predefined design system that can be seen when we edit
the version properties, in the Default Style. The style corresponds to the Design System object
containing all these definitions. By default, this Design System object is created in the KB and
takes the same name as the KB. This DSO is configured below the Web interface property
group: this means it controls application development when Web Panels are used. Since we
are working on a native mobile application, this is not our case, because we are using Panels
instead of Web Panels.

5



To take control of the design when we are in a native environment, we must make changes
where the platform definitions are located, which is below the Customization node. In the Any
Platform node, we can see that the Style property is taking the Design System object named
UnanimoMobile. Unanimo is already a Design System –the one predefined by GeneXus–
created in the GeneXusUnanimo node. It is the one that by default will take control of the
design of the entire application if we don't define something else.

6



As we are going to develop from scratch, we will create a new object of Design System type
that will apply the styles to our native application. We will call it GXMobileCourseDSO, and we
will indicate here that this Design System must inherit from the definitions of the
UnanimoMobile Design System. To do so, in the Styles tab we write the following:

7



We will use the Tokens and Styles tabs to make our definitions, but first, let's indicate
GeneXus that we want our KB to use the Design System we’ve just created. Let's go to Any
Platforms and change the Style property.

8



If we look at the different sizes and platforms, we can see that they inherit from the one we’ve
just configured, but we can change this using a Design System object for each screen size and
platform.

9



Before running our Panel, to see how it looks before we start changing its style, let's configure
the use of the Live Editing tool. But... what is Live Editing? When prototyping an application,
one of the most time-consuming tasks is polishing the Look & Feel (or User Interface, UI) and
the User Experience (UX). To simplify this task, GeneXus has a feature that allows you to
change the state of the application in real time from the IDE without saving the modified
objects.

To prototype in Live Editing mode, we simply change the Release value in this ComboBox to
Live Editing and run the application again. If you are using the Trial version of GeneXus, you
will have to run it with Administrator permissions.

In this case, since it is the first time that the Live Editing mode is enabled, it will be necessary
to compile the application again, but this won't be necessary for the next changes, which will
simply be reflected automatically in the emulator and in the GeneXus IDE.

10



We run it.

We already have the application ready again in the emulator, only that now we enable Live
Editing.

In the IDE we can see that a Live Editing tab has been enabled, containing information of the
devices that are connected; in this case, the emulator we had running. We can see the device
data, such as the name, the Design System that is being used in the application and the
language. The green dot indicates that the device is connected to Live Editing.

We can also see that a new window called Live Inspector has been opened. This is one of the
main advantages of Live Editing. Although there is a restriction and we can't see when a menu
object is running, the rest of the panels are visible. We just hover the mouse over the on-
screen controls to view their name and click on them to see their main data.

11



Moving the mouse we can rotate the image in any direction, and see layers that show where
each control is located. These layers allow us to select them in a much simpler way, since in
general the sections or tables are superimposed. With the Separation slider we can increase
or decrease the space between layers; with Zoom we can zoom in or out, and if we select Pan
instead of Rotate, we can move the content with the mouse, without Rotating it. With Reset we
return to the default display.

12



But, how does Live Editing work? When we use Live Editing, the Server will be “listening” to the
changes we make and will replicate these changes on the Metadata that is accessed by the
mobile device (in our case, the emulator) and used to draw the screen on the device and
define its behavior.

Live Editing has some use restrictions, for example:
• It doesn’t work for menu objects.
• Changes that involve server access cannot be displayed. For example, if we add an
attribute to the form, the value must be retrieved from the database in a server event (Start,
Refresh, or Load), so it will be necessary to compile the application again.
• Since live editing only works with the compiled application, it doesn't work if you are
prototyping with the GPN (GeneXus Projects Navigator).

For more details on the use of Live Editing and Live Inspector, visit the GeneXus wiki:
https://wiki.genexus.com/commwiki/wiki?27806

13



Let's go back to our example. We want the title to be centered in the cell that contains it, so we
can use the Horizontal Alignment and Vertical Alignment properties with the values Center and
Middle, respectively.

14



Let's also change the Horizontal Alignment property of the TextblockDescription so that the
text is justified.

Let's add two more columns to the table, one to the left and one to the right of the content,
and two more rows, one below the title and one above the button, in order to generate spaces
that make the information look better. In the Columns Style property, we can see that each
column takes up 33% of the total width of the table. Let's change the values so that the first
column takes up 10% of the total width, the second column (which contains the content) takes
up 80%, and the last column takes up the remaining 10%. Now, let's change the values of the
Rows Style property, so that the second and fourth columns –which are the separators– take
up 20 and 30 dips, respectively.

15



Let's also set the Auto Grow property of the cells containing the Textblocks to True. In this
way, if the predefined space for each cell is not enough, the cells will expand so that all the
content is visible.

16



Now let's start to change the style of the Panel controls. First, we change the color and font
type of the title. We could also set a centered alignment in the DSO, but it won't be necessary
because we’ve set it in the properties and they belong to a hierarchical order above the DSO:
that is to say, if we set the centered alignment in the DSO, the values of the properties would
override them.

Let's give a name to the set of tokens we will create in order to keep the DSO organized: let's
call it TravelAgencyMobile.

17



Let's start by defining a color constant: we will give it an identifying name, for example,
Primary. For all the colors to be easily identifiable just by looking at the code, we will keep the
same naming convention for every color constant we create, and the name will start with the
word color. If we already know the hexadecimal value of the color (for example, because the
design team gave it to us in a Figma file) we enter it here. We will use this dark green for the
title.

On the right there is another editor that is synchronized with the one on the left; that is to say,
we can work in one or the other and what we do in one will be reflected in the other.

18



In the Styles tab, we will create the class that will style the content.

We will name it titles, and we will add the necessary CSS properties to establish the
characteristics of this class.

The color to be applied is that of the token that we have just defined, so we write:
color: $ (which allows us to reference a token) colors (because it is going to be a color
token).colorPrimary;
In this way, we indicate that every control that has this class associated with it will have this
color.

Let's specify now the font family to be used:
font-family: HeeboBold;

This font family is not part of the predefined ones; that is, those understood by default by
browsers. This means that we must define in the DSO what that font is and where it is
obtained from. To include it, we will have to import the font file in the KB to be able to
reference it in the font-family property of the DSO.

19



We go to Customization → Files → New file, create the file called HeeboBold and choose it
from its location. Here we enter the name that the font family will have, and in the src property
we indicate where the file is taken from. With the gx-file() function we retrieve the file
accessible in our KB. This indicates the DSO to include this font, but then it is used in the
class reference through the font-family property that we defined for our titles class.
font-family: HeeboBold;

With the font-size property we indicate the size we want for the title.

20



The next step is to set the Textblock control to take the titles class we’ve just defined.

21



Live Editing already shows what we did in our DSO.

22



Let's do the same for the information text. Let's create another color token and name it

colorSecondary; this time it is dark grey...

23



Also, a class named paragraph to which we set the following properties:

24



Let's assign the paragraph class to the TextblockDescription control, and see how the changes
look.

25



Now, we have to style the button. For that, let's create a new color token called colorButton to
associate this shade of green…

26



…and let's start defining the properties of the myButton class.

The border-radius property is used to round the edges; the background-color property allows
us to set the background color; the padding property creates a space between the button’s
text and its edges.

Now let's complete it with the text style, which is the same as we did before...

27



...and associate our class with the Panel button.

28



We can use not only color tokens, which are the most noticeable ones, but we can also
define them for other kinds of things, for example: to give spacing, to define font sizes,
etc.

There are properties that are common to several controls (such as border-radius,
background-color, color, font-family, font-size, among others).

29



When we are working in the Styles tab, the properties window gives the option to filter by
control type, where we will see and configure only those properties that apply to the selected
control, and filter by UI, where we can choose the type.

30



So far, we have designed the light mode of our application, but we can also design the dark
mode. For that, we will have to think about varying the background color, the color of the texts
and also the color of the button. In the case of the background, in light mode it will take the
white color that we already have, and in dark mode it will take a very dark gray. For the title, in
light mode, it will be the dark green that we defined as the primary color, and in dark mode it
will be white, to contrast with the dark background. Similarly, we will define the colors for the
description text and for the button in dark mode.

31



Let's specify the background color of the application: let's create the Application class and
define the color, which we will retrieve from a token named colorBackground.

32



By naming the class like this, it will be the one applied in the body tag of all HTML
automatically.

33



To specify the modes, we must use the options: color-scheme can be light or dark. By typing
light in square brackets, we are indicating that we want this to be the default mode. Next, we
vary the color tokens according to the color-scheme. For the light mode we will use these
colors, and for the dark mode we copy those of the light mode and simply change the colors to
be applied: the title will be white, the description will be a light gray, the button will be a
different green than the one we used in the light mode, and the background will be a very dark
gray.

Before running to see the changes, set the 'Enable Preferred Color Scheme' property of the
MyHome Panel to True and do Build All.

34



In this way, our application will be adapted to the needs of all users.

We have seen an introduction of everything we can do with the Design System Object. In a
future video, we will learn how to import into our KB a Figma design created by the designers.

35




