
………..……………………………………………………

Design System in GeneXus
Overview

1

………..……………………………………………………

DESIGN
SYSTEM

Master Page

Theme / Design System Object

User Controls

Patterns

Stencils

Web Panel Web Component

Controls

classes

In GeneXus, which players take part in modeling the Design System of an
application?

Here we will briefly describe them. After this course, you will be able to learn more
about them if you want to focus on the User Interface of your application.

………..……………………………………………………

DESIGN
SYSTEM

Master Page

Theme / Design System Object

User Controls

Patterns

Stencils

Web Panel Web Component

Controls

Using a top-down approach:

We have Patterns, such as the Work With of a transaction, which create Web
Panel objects, among other things. These panels already include part of the Design
System.

For example, actions have a common aesthetic, with a color that is also used in the
buttons of the transaction or Web panel to display the information of an item.
There is also a common header that all pages share by default. Not only those of
the Work With, but also those of the Web Panels we created from scratch. To
avoid repeating this common header in all Web Panels, there is a Master Page
object.

Each web panel will be loaded inside the ContentPlaceHolder control of its Master
Page. And here is that header we were looking at. When the Web Panel is
executed, its Master Page is also executed and the page viewed in the Browser is
the combination of both layouts, according to what the Master Page indicates.

………..……………………………………………………

For example, we see that the actions have a common aesthetic, with a color that is
repeated as well....

………..……………………………………………………

… in the transaction buttons or...

………..……………………………………………………

… those of the Web panel to view the information of an element.

There is also a common header that all pages share by default. Not only those of
Work With...

………..……………………………………………………

... but also those of the Web Panels we created from scratch.

To avoid repeating this common header in all Web Panels, there is a Master Page
object.

………..……………………………………………………

Each web panel will be loaded inside the ContentPlaceHolder control of its Master
Page. And here is that header we were looking at. When the Web Panel is
executed, its Master Page is also executed and the page viewed in the Browser is
the combination of both layouts, according to what the Master Page indicates.

………..……………………………………………………

DESIGN
SYSTEM

Master Page

Theme / Design System Object

User Controls

Patterns

Stencils

Web Panel Web Component

Controls

But there is also another way to compose panels. They are Web Component
objects; that is, they are like small pieces of Web panels that can be inserted into
other Web Panels.

For example, the Work With pattern already did it.

………..……………………………………………………

In the Web Panel showing a tourist attraction, we see three tabs, the first one
showing the general information of the attraction.

………..……………………………………………………

In GeneXus, for the General tab we don't have attribute controls, but a control of
component type.

………..……………………………………………………

And in the events it is indicated that a Web Component should be loaded in there.
The one named AttractionGeneral. We see that it is of Component type.

………..……………………………………………………

If we open it, it looks like an ordinary web panel, with its parm rule and events.

The pattern has already built its screens with these three objects, in order to reuse
as much as possible. We should also use them to create high-quality, cost-effective
systems that can be implemented once and reused as many times as necessary.

………..……………………………………………………

For example, suppose that now we are not interested in the back-office
application that uses the pattern, but in the customer-facing one, i.e. the one that
will be used by the end customers.
Suppose that the designers of our team designed the first three screens of the
application. The Home, from which you call one that shows all the tourist
attractions that can be visited; also, from this one, by choosing an attraction, the
last one is called, which shows the information of that chosen tourist attraction.

………..……………………………………………………

Note that from a design point of view there are repetitions: the three screens have
a header with a background image, an overlay text, a menu and a logo, and an
image representing a chatbot. Ideally, a Master Page should be used to implement
this common header, where, depending on the object being loaded in the content
container, the background image and text will be displayed (this is programmed in
the Start event of the Master Page).

If we need to reuse the logo and menu somewhere else, we can choose not to
implement them directly in the Master Page itself, but in a Web Component,
which we insert in the Master Page... and everywhere else we need it, of course.

The web component has behavior: for example, we must program which object to
call for each menu action. We also want to program an action when the user clicks
on the logo. That's why it is not an object that allows reusing only one part of the
screen, but rather it can be considered as a miniature Web Panel. For most
purposes it is a Web Panel.

………..……………………………………………………

OK, let's go on... We didn't say it, but, of course, the common footer should also
be placed in the Mater Page.

………..……………………………………………………

Web Panel Home Web Panel Attractions Web Panel ViewAttraction

The specific content of each page will be implemented in each individual Web
Panel.

………..……………………………………………………

Web Panel

Web Component

Master Page

These objects (Web Panel, Master Page, and Web Component) are executable;
that is, they have behavior.

But there is also another type of object that does offer to reuse only a piece of
layout, without behavior. It is the Stencil object, which allows doing the same thing
that Web Components do, but only at screen level, so it will not have rules or
events.

It is a way to build more complex controls from simpler controls.

………..……………………………………………………

Web Panel Home Web Panel Attractions Stencil

If we look at the first two Web Panels, we see that this screen section has the
same structure and design. In both Web panels, we would have to repeat tables
with text blocks and give them exactly the same layout. To avoid these
repetitions, we can group these controls in a Stencil object, and then insert a
stencil control in both Web Panels, which is loaded with the created stencil
object.

In general, if we know that the structure and design of a set of controls on a
screen will be repeated on many screens, even if they have different content,
then we can group them in a Stencil object and use that object in the Web
Panel, Master Page, or Web Component.

………..……………………………………………………

Web Component Stencil

The main difference between a Web Component and a Stencil is that the
Stencil has no behavior; that is, it is not an executable object, while the Web
Component is.

This is why the Stencil is clearly a Design object. It is entirely intended for the
Design System.

………..……………………………………………………

Another example of use of Stencils: we want to implement the menu with
images that we see on the home page. There are 4 options with identical
design. They are like cards. Then we could create a Stencil and reuse it 4 times.

In this Stencil, we would have to overlay two texts and an arrow image on a
background image in order to create this kind of card. That is, we are
composing a kind of larger control using tables, images, variables, textblocks.
And the question that we will answer in a moment is how we design all these
controls.

The other option, without using a stencil, is to directly incorporate a control
made by a third party. For example, the control to design cards provided by the
SemanticUI design framework.

………..……………………………………………………

To do so, it is enough to create a User Control object in GeneXus. Then, copy
the HTML code provided by the supplier, change the fixed data to variable data,
and indicate the file containing the style of the HTML elements. That is, the CSS
file provided by the supplier.

………..……………………………………………………

After doing this, we can use it as another control from the toolbox.

………..……………………………………………………

And so, at runtime we will see...

………..……………………………………………………

DESIGN
SYSTEM

Master Page

Theme / Design System Object

User Controls

Patterns

Stencils

Web Panel Web Component

Controls

In short: first we talked about the patterns that use Web Panels, Master Page,
Web Components to implement parts of the application.

We’ve seen these objects as ways to componentize the programs for maximum
reuse. Also, that they are objects with a layout and behavior.

Now we are getting close to the heart of the matter. In any of these objects we
have a layout to be designed.

And, besides being able to use third-party controls that already come with
design—User Controls— in that layout we can use Stencils to compose controls.
But adding design to a Stencil is the equivalent to adding design to any set of
controls in a layout.

So now we're getting to where we wanted: regardless of where the GeneXus
controls are located, how do we add design features to them?

………..……………………………………………………

control class …

On the left is the screen as we want to see it at runtime. On the right is the Web
Panel Home. It is loaded inside the displayed Master Page, which in turn uses the
Web Component. In addition, besides having common controls, the Web Panel
uses a Stencil that also has a layout.

The way to add design to each one of the controls of these layouts is using what
we know as classes. Each control is associated with one or more classes, which
determine how it is displayed on the screen.

………..……………………………………………………

H1_Negative

color: white;
font-family: AbhayaLibre-Bold;
font-Size: 95px;

For example, if we look at the title “Get ready to Explore” corresponding to the
text block we see here... how do we set it to be a white title, to have that font
family, and that size?

The answer is: by associating it with a class, which is named as we want and is
semantically meaningful, for example, H1_Negative, to indicate headings on a dark
background. Also, indicating the desired design features at the class level.

The class can be reused in many other controls, and that is the advantage of its
design features being independent of the control.

………..……………………………………………………

Theme / Design System Object

H1_Negative

H2

MainActionText

NormalText

H1_Negative

H2

NormalText

MainActionText

color
font-family
font-size
etcetera

line-height
font-family
font-size
etcetera

text-decoration
text-transform
etcetera

letter-spacing
align
word-spacing
etcetera

So, the idea is to associate all UI controls or elements in the objects—for
example, these 4 texts—with the style classes identified as significant. Then it
will only be necessary to define the design properties of each of these classes,
in an object that centralizes them.
Until GeneXus 17, this object was the Theme, but from then on it can also be its
evolution, the Design System object.

Therefore, the page, which has class names for each control, will only need to
know which Design System object or Theme it has to go to in order to retrieve
the design properties of each one of those classes.

And that is the way GeneXus separates the structure and content of the pages
from their design.

………..……………………………………………………

Style Object

All these objects that implement the page we will see in the browser have an
associated style object: either the Theme object or the new Design System object.
In this Theme or Design System object, the classes are declared with their specific
properties that give them the style they will be displayed with on the screen.

………..……………………………………………………

………..……………………………………………………

………..……………………………………………………

………..……………………………………………………

………..……………………………………………………

………..……………………………………………………

………..……………………………………………………

………..……………………………………………………

DESIGN
SYSTEM

Master Page

Theme / Design System Object

User Controls

Patterns

Stencils

Web Panel Web Component

Controls

classes

And this is how the controls are designed: through classes whose properties are
defined in the Theme or Design System object.

So far, we have only discussed how to develop web applications. However, almost
the same will apply to native mobile applications, or even Angular applications.

At the time this video was made, the latest upgrade of GeneXus 17 was number 7.
There the default style object is still the Theme, but in future upgrades it will be
changed to the Design System Object.

All this will become a reality and fully come to life when Unanimo—a complete
Design System with a new design for the Pattern and transactions too—is
released.

………..……………………………………………………

DESIGN
SYSTEM

Before Now

Design System

Theme

Wiki: Design Systems (https://wiki.genexus.com/commwiki/servlet/wiki?40108,Toc%3Design+Systems

There is a lot more to say and show, but here we simply wanted to present a
complete overview of how the Design System of any application is modeled in
GeneXus, at this turning point when we are changing from the use of the Theme
object to the new Design System Object.

There is already enough material (in videos and wiki articles) for you to learn more
about all this, whenever you want.

