
Descriptions instead of codes

Applications

▪ Need for a friendly user interface (UI)

Simple and fast data entry

One of the challenges facing application developers today is to develop a user-
friendly user interface.

Among other things, a friendly user interface implies that data entry should be as
simple and fast as possible. GeneXus provides configurable properties to simplify data
entry and help design more attractive interfaces. One of them is the InputType
property.

Its function is to replace what the user needs to enter in an attribute with a more
user-friendly value.

For example, consider an application for a travel agency, which has a transaction to
enter the airports and each of them has a country and a city.

If we declare the transaction as it is defined, by default the form will be this one,
where we will have to enter a code for the country and another code for the city.

Entering data using a code is not the best experience for a user. Even though GeneXus
automatically provides a form prompt where we can search by name, we could let
the user enter the name of the desired country and/or city and have the program
automatically search and assign the corresponding code.

We achieve this by changing the value of the InputType property of the attribute to
the descriptions value, as long as the control type is edit.

We will do it with CountryId, by changing from Values to Descriptions, and it will
enable new properties. The one we must fill in is Item descriptions.

Since what we want is to enter the name instead of the key, in the Item descriptions
property we select CountryName.

At runtime, it seems that CountryId has disappeared and only CountryName is left in
editable mode, but actually the attribute that shows those values is not
CountryName but CountryId “in disguise.”
If, for example, we want to select the country Brazil, we type it and internally a search
is performed in the Country table to retrieve the corresponding code, which in this
case will be “1,” but this will be transparent for the user. If we go to the Web Layout
of the transaction, we see that the attribute we have is indeed CountryId and not
CountryName.

It is important that the attribute we choose for the Item Descriptions property is a
candidate key in the transaction to which it belongs; otherwise, an ambiguity could
arise.

For example, let's suppose that in the Airport transaction we have to assign an
employee of the agency who is responsible for the coordination of flights. To do so,
we enter the EmployeeId and EmployeeName attributes of the Employee transaction.
If we change the InputType property of EmployeeId to Descriptions, and in Item
Descriptions we place EmployeeName, to enter the employee's name instead of the
key, we may get an ambiguity error; since EmployeeName is probably not a candidate
key, there can be two employees with the same name.

When it is run, we can see that the output shows a warning about this situation. If we
enter a name and there is more than one record with the same name, an error will be
displayed because it will not know which one to keep.

Therefore, it is always important to take this into account. Another consideration is
that the attribute entered in Item Descriptions must be in the transaction where we
use this property; otherwise, an error will be thrown. And it must also be of char or
varchar domain.

We can configure this Input Type property and its associated Item Descriptions at the
attribute level as we have just seen. If it is applied in this way, it will have this
behavior in each transaction where the attribute appears, except in its own
transaction—in this case, Country. However, we can also configure these properties
directly in the Web Layout of a transaction, and it would only apply to that form; in

this case, we must take into account that the dynamism is lost and that you will have
to manually change the name of the label and delete the description attribute that
will no longer be necessary. We can also use this functionality in any Panel or Web
Panel we have.

This behavior is similar to when we configure an attribute that is a foreign key, with
the Dynamic Combo Box type. The difference here is that we cannot type the desired
value but we choose it among the displayed options.

The disadvantage of having to type the descriptive name of a record we want to
select is that we may not remember it exactly or we may make a mistake when typing
it. To help the user when entering values, next to the input Type property set to
descriptions, the Suggest property is displayed. By default it is set to “No,” but if we
change it to “Incremental” the user will be offered matching values as he/she enters
letters.

Let's see it running; as we type letters, different options are suggested.
As we saw with the Input Type property, Suggest can be configured at the attribute
level or at the field level.

Once the property value has been changed, new properties are enabled; for example,
Filter Operator, to configure whether the records to be suggested should match from
the beginning of the input or simply contain those letters. Also, if we want the filter
to be case sensitive or not, or even to be able to set a limit of records to be
suggested, by default it is set to 5. The latter can help reduce loading times in case
there are many records.

Something else that this allows is to set conditions to this search; for example, if for
some reason we only want to display the countries that begin with the letter “S” we
can enter the following condition. At runtime, if we enter any other letter it will not
suggest the matching records; even if we enter the name of a country that exists in

the database it will not find it—that is, it neither suggests it nor allows us to register
it.

Another property that appeared is “Instantiated Attributes;” here we have another
way to limit the set of possible values that will be suggested for entry. It is used to
filter a set of attributes based on other attributes that cannot be directly inferred.
To clarify this, let's look at it in an example:
Suppose we are developing an application for a company, where we have a
transaction to enter the products that are sold there, and another transaction to
enter the suppliers of those products. In turn, for each supplier we record the
products that this supplier provides and the company sells.

In addition, we have another transaction that will be used to enter claims about a
certain product and supplier.

Let's suppose that each product will have a unique name, and we are interested in
searching for products by typing their name, so we configure the ProductId attribute
with Input Type in Descriptions and in Item Descriptions we set ProductName. We
leave the Suggest property set to “Incremental” so that it suggests the records.

For this example, we are going to have 2 products for supplier A and 2 products for
supplier B.
We are going to enter a claim, so we select the supplier. When we type a product, it
also suggests the products of supplier B; that is to say, it is showing all the products of
the table Product. We only want it to suggest the products from supplier A, which

means that it should search the SupplierProduct table only for the products that have
supplier A.

The property that we have just seen (Instantiated Attributes), is precisely for limiting
the set of possible values displayed and/or entered, based on information that we
have instantiated in the transaction.

In order to display only the products of the chosen supplier, we must indicate the
SupplierId attribute as instantiated in the mentioned property. The attributes
indicated here are involved in determining the table to be navigated to suggest and
accept the values entered by the user. In this case, when entering SupplierId to
retrieve the ProductId, the table navigated will be SupplierProduct.

At runtime, we can see that now it only brings the products of the chosen supplier.

VS.

• It allows you to write the value
• You can specify a maximum number of

values to display (Max Items)

• It does not allow writing the value; it
allows selecting it from a list

• You cannot specify a maximum number
of values to display

For the Dynamic Combo boxes it is also possible to use the Instantiated Attributes
property, as well as the Conditions property.

As we have seen, the use of the Dynamic combo box is similar to when we set the
Input Type in Descriptions. One difference is that the Edit controls allow typing
values, even different from the suggested ones, while the combo controls do not.
Another difference is that in the Edit controls, as we saw, you can specify a maximum
number of values offered with the Max Items property and in the dynamic combo it is
not possible. Therefore, if the number of records is very large it will still load all of
them, and that is an advantage of the Edit controls.

This is a summary of the use of the properties shown; to learn more, we recommend
you explore our Wiki.

training.genexus.com
wiki.genexus.com

