DEMO: OpenlID Connect

First demo: OpenlD Connect

GENEXUS USERS ROLES SETTINGS-
ACCESS MANAGER

Authentication Types

CENEXUS USERS ROLES SETTINGS-
ACCESS MANAGER

Authentication Type

Type (select) v
(select)
Apple
Custom
External Web Service
Facebook
GAM Remote
GAM Remote Rest

Google
One Time Password

Saml 2.0
Twitter
WeChat

For this demo, we will use the Oauth 2.0 protocol in GAM. Our identity provider
will be Azure Active Directory from Microsoft.

We will assume that configuration on the Azure side has already been made
correctly and we will not go into detail about it. In the GeneXus Wiki, you will find
a detailed article on how to do so.

First, we create a new GAM QOauth 2.0 Authentication Type and define the basic
concepts, such as Name, Description, etc.

General Authorization Token User Information

Client Id Tag client_id Value 2d55edaa-22c6-4T6e-acc6-5f3728018bc

Client Secret

Tag client_secret Value
Redirect URL Tag redirect_uri Value hitp:/localhost:8080/GAMCourseJavaEnvironment/
Custom Redirect URL? o
Redirect to authenticate? o

In the General tab, the following must be defined:
First, we set the Client ID and Client Secret obtained from Azure.
The redirection URL must be the Base URL of our application's back end.

As we said in the previous video, we will not select the Redirect option to
authenticate because we want to log in from the GAM itself.

General Authorization ~ Token User Information https://login.microsoftonline.com/{tenat}/oauth2/v2.0/authorize

URL https:/login.microsoftonline. comt nauth2/v2 0/authorize

Advanced configuration

ResponseType

Tag response_type Value code
Scope Tag scope Value https:/igraph. microsoft comuser read
State Tag state
Include Client Id
]
L
]
Response
Access Code Tag code
Error Descriprion Tag error_description

Now, we go to the Authorization tab.
There, we set the Azure URL obtained from its portal, which looks as follows.
Next, we modify the Scope, which must contain the URL shown on the screen.

The rest is left with the default values.

Genersl Authorization | Token | User Information https://login.microsoftonline.com/{tenat}/oauth2/v2.0/token

URL https:/flogin.microsoftonline.com: ‘oauth2/v2.0/token

Advanced configuration

Token Method POST +
Header Tag Content-type Value application/x-www-form-urlencoded
Include Authentication header? Method Basic v Realm
Include Authorization header with Basic value?
Grant Type Tag grant_type Value password
u
u
u
Additional Parameters scope=https://graph.microsoft. com/user.read

In the Token tab, once again we set the Azure URL obtained from the portal, which
looks as follows.

The rest is left with the default values, except for the Grant Type and Additional
Parameters fields, which should be set as shown on the screen.

Note that the latter should only be changed when you do not want to redirect
when logging in, so that it is done from the GAM login.

Otherwise, the Grant Type should be left with the default value (which is
authorization_code) and without additional parameters.

The rest of the options are left with the default values.

User Email Tag mail

User Verified Email Tag
General Authorization Token User In
User Extemal Id Tag id
URL
User Name Tag userPrincipalName

Advanced configuration

User First Name

Tag givenName
User Info Method
User Last Name Tag surname
Header irset=utf-8
User Gender Tag gender |
Include Access Token
User Birthday Tag birthday
Include Client Id
User URL Image Tag picture
Include Client Secret
User URL Profile Tag link
Include User Id User Language Tag locale
User Time Zone Tag timezone
Error Description Tag message

Lastly, in the User Information tab, we simply set the URL shown on the screen
(also obtained from Azure) and do not include anything.

This is how the user is created in the local GAM, and it is where the user
information is mapped according to the configured IDP.

The IDP must return a unique user identifier, which must be configured in "User
External Id Tag" to ensure that in subsequent GAM logins the same user is being
authenticated.

We set the rest of the parameters as shown on the screen.

The configuration is now complete.

LOGIN

Log on to openid b

[Keep me logged in

SING IN

FORGOT YOUR PASSWORD?

or creafe an account

OR USE

Now, we go to Login, select the authentication type we have just created, and
enter the credentials of a user defined in Azure.

That’s all.

DEMO: IDP

Second demo: IDP.

Application

General - Rem WEB (Identity Provider, SSO)

Client ID
Allow authentication?
Client secret
Can get user roles? (.
Oauth single user
WEB (Identity Can get user additional data? O
Allow authenticati
Can get session initial properties? O
REST OAUTI
Allow authenticati lmage URL
Local login URL http:ilocalhost:8080/ApplDPJavaEnvironment/'com_appidp.gamremotelogin
Callback URLs http:/flocalhost:8080/App1JavaEnvironment

For this demo, we will use the Oauth 2.0 protocol again. The GAM, through it, will
be our identity provider.

First, we configure our GAM application defined on the IDP server that will act as
the provider.

To do so, we select the “Remote Authentication” tab in the application settings
from the GAM back end.

We save the Client ID and Client Secret to set them later in the client application.
Next, we select the option to allow authentication in the WEB section (Identity
Provider, SSO). There, you can indicate if you want to share with the Client the
users' roles, additional information, etc.

It is important to show the local login and callback URLs in the demo. The first
one must correspond to the Web Panel GAMRemoteLogin of the KB, which will
perform the login process in the IDP. The second one must be the path of the
client application from where the IDP will be invoked, which will be called after the
login process is completed. This last parameter can be composed of more than one
URL, which must be separated by semicolons.

Of course, GAM is where the users that will be used to log in to the IDP must be
defined.

With this configuration and a user created, we have finished the process from the
IDP side.

‘GENEXUS

ACCESS MANAGER

USERS ROLES SETTINGS ~

Authentication Types Try a Search L ADD

GENEXUS
USERS ROLES SETTINGS ~

ACCESS MANAGER

Authentication Type

Type (select) v

(select)

Apple

Custom

External Web Service
Facebook

‘GAM Remote

GAM Remote Rest
Google

One Time Password
Qauth 2.0

Let's look at the Client side.

The first step is to go to Authentication Types from the GAM back-end menu, and
create a GAM Remote type.

10

Authentication Type

Type GAM Remote

Name’ gamremote

Function Only Authentication v
Enabled?

Description gamremote

Small image name

Big image name

Impersonate (none) v
Client 1d.” b62c8ad36ca34614821066e7d1c94ffe
Client Secret

It is important to configure the following:
Set the Function property to Only Authentication since on the IDP server side we
do not indicate that the user roles are shared. If the other option (Authentication

and roles) is set, we will get an error when logging in.

The next thing to configure is the Client Id and Client Secret saved from the IDP.

11

Local site URL" http://localhost:8080/App1JavaEnvirenment
Custom callback URL? O
Add gam_user_additional_data scope? O Add gam_session_initial_prop scope? 0O

Additional Scope
Remote server URL" http://localhost:3080/ApplDPJavaEnvironment
Private encription key

Repositery GUID

Validate external token [

$Server/<Base_URL>

Later on, we will configure the “Local site URL” property with the address of our
client application, the same that we already specified in the Callback URL in the
server; also, the “Remote server URL” property with the address of the IDP,
following the format shown in red.

Additional comments:

The property “Add gam_user_additional_data scope?” must be activated when we
want to send additional user data. On the server side, the Allow authentication
property must be selected, in the Web section (Identity provider, SSO).

The “Add gam_session_initial_prop scope?” property involves asking the IDP to
return the initial properties dynamically set at login to the client. Of course, the
IDP must also be configured to send this information.

Finally, the “Validate External Token” property validates the expiration of the

session according to the expiration of the token and renews it automatically
without having to do it manually.

12

LOGIN

[Keep me logged in

SIGN IN

FORGOT YOUR PASSWORD?

or create an account

OR USE %
Sign in with gamremote

For the purposes of the demo, we create a Web Panel in the Client application,
where it shows us the data of the logged in user. Of course, this object has
integrated security activated with the Authentication value.

When we want to access it, since we are not logged in, we are redirected to the
login.

Note that since we have the Oauth authentication type defined, from the login we
have the option to access through it.

13

[: Remote Login X +

< C O @ localhost:8080/ApplDPJavaEnvironment/com.appidp.gamremotelogin?OA2STDbd81a30cebec43c38bec394b

Identity Provider

ApplDP

SIGN IN

FORGOT YOUR PASSWORD?

OR USE

When clicking on this option, we see that it redirects us to the IDP and its remote
login.
We log in with the user that we had defined in the IDP.

14

App Client

GENEXUS USERS ROLES SETTINGS-
ACCESS MANAGER

A Administrator

+/ SHOW FILTERS Users Try a Seard ADD
User Name First Name Last Name Authentication
nadrien@mail.com Nicolas Adrién idp £DIT
admin Administrator User local EDIT
FIRST/ PREV/ NEXT
Usemame nadrien@mail.com '
EMail

nadrien@mail.com

First Name Nicolas

Last Name Adrién

We are now redirected to our Web Panel with the information of the logged in
user.

In the back end of the client application, we can see the user we had created in the
IDP with its information.

15

DEMO: Custom Authentication

Third demo: Custom Authentication.

16

Parm(in:&5trInput, out:&5troutput); //&StrInput and &5trOutput are varchar(256)

"@3E1E1ARASBCAL9FBABC42858B4ABF 28

&K =
WSLoginIn.Fromlson(&StrInput) // &GAMWSLoginIn is &GAMWSLoginInSDT data type

a6

//Decrypt parameters

fUserLogin = Decrypt64(AGAMWSLoginIn.GAMUsrLogin, &Key)}

rPassword = Decryptéd(SLoginIn.GAMUsrPwd, EKey)

Ws nout = New GAMWSLoginOutsDT() //&GAMWSLoginOut is &GAMWSLoginOutsDT data type
WS nout.WSVersion = GAMAutExtWebServiceVersions.GAM1@

MWSLoginOut.User = New GAMWSLoginQutUserSDT()

Do 'ValidUser'

&stroutput = &GAMWSLog

Logi

nout.Tolson()

Sub 'ValidUser' Sub 'GetRoles'

utUserRol = New()

= !"password" utlUserRol.RoleCode = "role_1"
nout.Ws5tatus = 1 ut.User.Roles.Add (&GAMWSLoginOutlUserRal)
t.User.Code = !"code” noutUserRol = New()
inOut.User.FirstName = !"Firsthame" utUserRol.RoleCode = “role_2"
= !"LastName" WsLoginout.User.Roles.Add (&GAMWSLoginOutUserRol)
WsLoginout.User.EMail = !"name2@domain.com” EndSub
Do 'GetRoles' //foptional
Else
AGAMWSLoginOut.WSStatus = 3
EndIf
Else
EGAMWSLoginOut.WSStatus = 2
EndIf
EndSub

To perform a Custom authentication, we must create a procedure.
In the GeneXus Wiki, you can find the example shown on the screen, with a very
simple logic already defined. It is up to the developer to modify it as needed.

First, we see that two Varchar are defined as rules: an input and an output one,
which will bring the data entered by the user and return the result of the login
with certain user information (if successful, of course).

Then a key is defined that we will explain in detail later on, and the parameters of
that input parameter from the rules are decrypted, in addition to creating a data
type that will be loaded in the output parameter at the end of the process.

Next, in the ValidUser method the user name and password are validated; in the
example, by verifying that the user name is “user” and the password is
“password.”

Otherwise, different errors are returned depending on the failure.

This method should be changed for a more secure login logic that does not
distinguish between errors based on username or password.

Optionally, the GetRoles method can be used to define certain roles for the logged
in user.

This method is useful when we want to program how we validate a user's

password, either to validate it against a local database, against an LDAP, or against
another place where the user's credentials are stored.

17

17

GeneXus

GENEXUS

USERS ROLES
ACCESS MANAGER SECURITY POLICIES A Administrator

APPLICATIONS
REPOSITORY CONFIGURATION

X HIDE FILTERS Users ADD
REPOSITORY CONNECTIONS
AUTHENTICATION TYPES
GENDER CHANGE PASSWORD
User Name First Name CHANGE WORKING REPOSITORY Authentication
(Al v custom FirstName EVENT SUBSCRIPTIONS custom EDIT
GAM CONFIGURATIONS
AUTHENTICATION TYPE admin Administrator User local EDIT
test Test GAM local EDIT
(All) v
ROLE FIRST/ PREV/ NEXT
(All) v

Now that we have a custom authentication procedure, we need to configure it in
GAM.
The first step is to go to Authentication Types, and create a new one of Custom

type.

GEMEXUS

ACCESS MANAGER

Authentication Type

Small imaga name
Big mage nanme
Impersonete

Enable Two Factor Authentication?

JSOM version
Privata encription key IE1E1AAASECA 10F BABCA2050B4A1 Generate Key Custom
File name

Package

Class name’

CANC CONFIRM

Here, the settings to highlight are as follows:

Function: It allows specifying if we want the authentication type to be
Authentication and roles, or only Authentication. In our case we leave the first
option.

Private encryption key: here you must configure the encryption key used in the
procedure to decrypt the user and password received. As you may remember, in
the slide of the GeneXus procedure that | showed before, a key was defined that
we enter in this property. It is useful because the GeneXus encryption function
uses it to encrypt the username and password when they are sent to the program.
File name: here we specify the name of the file corresponding to the external
procedure. In the case of Java, it is optional.

Package: in the case of Java models, the same Java package name property value is
specified here, and in the case of NET models the value of the application
namespace property is specified here. This property is optional and depends on
whether the procedure or program used has a package or not.

Lastly, Class name, a mandatory property that specifies the name of the
procedure's class.

19

LOGIN

Log on to

Custom Authentication Type v

[J Keep me logged in

SING IN

FORGOT YOUR PASSWORD?

or create an account

Once everything is configured, we simply set the custom authentication type in
our login, and the login is made.

It should be mentioned that in this case the authentication type is selected
through the highlighted combo box because we indicated that it should not be
redirected to the IDP. Otherwise, the authentication type is shown as an icon at
the bottom of the login as we saw in the IDP Demo.

20

DEMO: OTP

OTP.

21

Repository Configuration

General Users Session EMail

Server Host Server Port

Timeout (seconds) 20 Secure
Sender email address Sender name Mail
Server require authentication?

User name Password

Send email when user activate account? (

Send email when user change password?

Send email when user change email/username? O

Send email for recovery password? O

A prerequisite to make OTP work is that the repository must have the email
service configured to send the codes.
This is configured in the “Repository Configuration” option of the GAM back end.

22

GeneXus

GENEXUS

USERS ROLES s Adi traf
ACCESS MANAGER SECURITY POLICIES A iministrator
APPLICATIONS

% HIDE FILTERS Users REPOSITORY CONFIGURATION ADD
REPOSITORY CONNECTIONS
AUTHENTICATION TYPES
GENDER CHANGE PASSWORD
User Name First Name CHANGE WORKING REPOSITORY Authentication
(Al v custom FirstName EVENT SUBSCRIPTIONS custom EDIT
GAM CONFIGURATIONS
AUTHENTICATION TYPE admin Administrator User local EDIT
test Test GAM local EDIT
(All) v
ROLE FIRST/ PREV/ NEXT
(All) v

Now, to define this type of authentication, everything is done and configured
again through the GAM back end.
As in the previous Demo, we go to Authentication Types and add a new type.

GENEXUS

USERS ROLES SETTINGS ~ ; i
ACCESS MANAGER A Administrator

Authentication Type

Type (select) v

In this case, we select the One Time Password type.

24

GENEXUS

ACCESS MANAGER

ROLES SETTING A Administrator

Authentication Type

Type One Time Password 7] elete
Name* otp

Function Only Authentication

Enabled?

Description ©One Time Password
Small image name

Big image name

Impersonate local v

Use For First Factor Authentication?

User validation event (none) v

Code generation type oTP v

Let's describe the most important properties:

Impersonate: Here we specify the type of authentication where users are going to
be validated when using OTP. As | mentioned earlier in the theory section, the
users must already exist. This is the only authentication type that requires
configuring this property since the users must already exist in the GAM database.
Use as first factor authentication: If you do not configure this property, OTP could
only be used as a second factor. In our case, we enable it.

25

Autogenerated OTP code length

Generate code only with numbers?

Code expiration timeout (seconds) 1800
Maximum daily number of codes

Number of unsuccessful retries to
lock the OTP.

Automatic OTP unlock time 60
(minutes)

Number of unsuccessful retries to
block user based on number of OTP
locks

Send code using Email by GAM ~
Mail message subject Na have sent the cod € 1

Mail message HTML text 0 access the application %1 enter the f

Validate code using GAM ~

The rest of the properties are used to define properties of the code to send and
the format of the email.

In this case, we will use GAM's default format, which is email, but remember that
it is possible to send the code via SMS. If the developer chooses this second way,
he/she must implement and configure the GAM event that must be selected in the
“Send code using” property.

26

LOGIN LOGIN

Log on to user

One Time Password h

We have sent the code to access GAMCourse

Mail
parami ¥

To access the application GAMCourse enter the following code: 784693
) Keep me logged in VALIDATE CODE
SEND ME A CODE BACK TO LOGIN

Finally in the Login, we select the OTP type, where we can see that we will only be
asked for the user name to send the code.
After receiving the code via email, simply log in to authenticate in the system.

27

DEMO: TOTP

In this demo, the steps to configure a new TOTP authentication type are almost
the same as OTP, except for one difference.

28

SECURITY POLICIES

Gen

A Administrator

GENEXUS
USERS
ACCESS MANAGER
X HIDE FILTERS Users
GENDER
User Name First Name
(Al v custom FirstName

admin Administrator

AUTHENTICATION TYPE

test Test
(All) v
ROLE
(Al) v

REPOSITORY CONFIGURATION
REPOSITORY CONNECTIONS
AUTHENTICATION TYPES
CHANGE PASSWORD

CHANGE WORKING REPOSITORY
EVENT SUBSCRIPTIONS

GAM CONFIGURATIONS

ADD
Authentication
custom EDIT
local EDIT
local EDIT

To define this type of authentication, we go again to Authentication Types and add

a new type.

29

GENEXUS

USERS ROLES SETTINGS ~ ; i
ACCESS MANAGER A Administrator

Authentication Type

Type (select) v

In this case, we also select One Time Password type.

30

Code generation type TOTP Authenticator

OTP
OTP custom
TOTP Authenticator

The difference with OTP is the property shown on the screen, where in this case
we choose TOTP Authenticator.

The rest of the properties are for code configurations that are not relevant here.

31

User
GUID €©7483297-a3e3-440e-a543-801801d09226 Edit
Permissions
Name Space GAMCourse
Roles
Authentication Type GAM Local Change Password
Unblock OTP Codes
User Name*® test
Enable authenticator
EMail* user@mail.com

Delete User

Let's see the most important caveat about OTP.

Each user must enable authentication through their settings.
The most important difference is that this code algorithm is time-based and the
codes are generated by the different authenticator applications.

For the purposes of the demo, it was created using the administrator user of the
GAM back end for a “test” user of a sample application.

The steps to be followed for this way consist of going to the user in question and
clicking on Enable authenticator.

32

Enable TOTP authenticator

User Name test

Email user@mail.com

Secret Key EQ75LTFDWEG2CVQK

Type a code

BACK ENABLE

Once there, the QR code will be provided to be configured in a software system or
mobile application based on one-time password authentication. After reading it, it
will return the code to be entered in the “Type a code” field.

33

LOGIN LOGIN

Log on to user

Time-Based One Time Passw hd

[

[J Keep me logged in

VALIDATE CODE
NEXT
BACK TO LOGIN

Lastly, the login is the same as in all the previous types, and in this case there is an
intermediary application that provides the access code.

34

GeneXus

training.genexus.com
wiki.genexus.com

training.genexus.com/certifications

35

