
Hi, how are you?

In this class, we are going to start working on the KB in GeneXus to be able to obtain, a few
classes later, the web application that implements these 4 screens that we were talking about,
for desktop size.
After that, we will see how to make the application vary according to the screen size, so that it
can be run and displayed perfectly on phone or tablet size devices, always for the web
application. And then, later on, near the end of the course we will see how to make the
application itself run natively on those devices.

Okay, so let's start by going to GeneXus....

...and note that I created a KB named TravelAgency, where inside a Transactions folder I
created the three transactions that in a simplified way will register the data in the Backoffice. I
populated each one with data from a data provider and applied the Work With Web pattern.

So, if I run... we see the Work With of the tourist attractions.

And if I choose this one, we see here the photo that will be used for the Customer-facing
application (the one we are trying to implement), the name of the attraction, the rating...

...the title that will be shown on the attraction's page, the information that will be listed on that
page, and if we go to the View tab, here we see this information related to the tourist attraction
that will be shown in a carousel, on this page, that can then be scrolled.

What we see running here is the Backoffice that we know that the Web (.NET) generator uses
by default for its Frontend.

And what is the Design System object that determines the style of the User Interface of this
Backoffice? If we look at the properties of the Attraction transaction, we see that the one with
the name Style indicates the object with the same name as the KB.

If we go to the properties of the WorkWithAttraction Web Panel, for Style we see the same
Travel Agency object. The same goes for the View, as well as for the other transactions and
Web Panels and objects with an interface that are created for the Backoffice.

We see this in the Style property of the KB version.

Remember that this DSO object is the only one that is created by default when creating any
KB, and that it takes the same name.
If we open it, we see that the Tokens tab is empty, but in the Styles tab it has this rule, which
indicates that all the tokens and styles of this other Design System Object, which is in the
GeneXusUnanimo module, will be imported.

And where is this GeneXusUnanimo module? It came installed by default in every KB, and it
can be found below the References node.
We open it and see that it is read-only, but, in addition to its specific token and style
definitions, it is importing two other DSOs, these ones, which are in the same module.

So it builds on top of these other two.

On the other hand, if we open these ones that we see here, what we will get is this tree, where
UnanimoMobile only imports Unanimo, and UnanimoAngular imports the mobile one and also
UnanimoControls.

If UnanimoWeb will be the one used by default in the Web Frontend, because, as we saw, it
uses a DSO with the same name as the KB that imports it...

... clearly UnanimoAngular will be the default also for the Web Frontend but Angular...

...and UnanimoMobile will be the default for Mobile Frontend (for all platforms, both Android
and Apple).

As we don't have any Frontend for these platforms yet, we can't see these DSOs in action. We
won't want to use them anyway. We will want to build the Customer-facing application that will
have another design system, the one designed by Chechu and we have been analyzing, so we
will create the DSO for Angular (which is the platform we will focus on most of the course)
from scratch. And then, at the end, we will see the native case.

To clearly separate the objects that will be specific to our Customer-facing application from all
the default objects in the KB, and those of the Backoffice, we will create a module that for now
I will call TravelAgency.

And inside it I will create another module, DesignSystems, to place the DS objects that we will
use. Later on we will see why there will be several and not just one. Now we can create the
one that will determine the style of the Angular application that we will develop initially for
Desktop size. Let's call it TravelAgency and define that it will be used for that platform.

We now have two TravelAgency DSOs, but we choose the one for the DesignSystems module
we've just created. All of the more specific web Angular platforms will inherit that DSO.

We were able to give this other DSO the same name because we placed it inside a module. But
let's rename this one so we don't get confused.

Now we are going to create a folder inside the module to organize there all the objects with a
user interface.
First of all, let's create the Master Panel and name it this way. If I try to save it empty, I will get
this error. It is mandatory to place the ContentPlaceholder control, which is where the panels
that have this as their Master Panel will be loaded. Now we will be allowed to save the object.

We are going to create the first panel, Home, which will implement this part of the screen that
we saw in Figma.

And we have to set it to load inside the Master Panel that we’ve just created. That is to say, it
will be loaded in here...

And we have to set it to load inside the Master Panel that we’ve just created. That is to say, it
will be loaded in here...

Now, in the same way we will create the other three panels, which are empty for the moment.
And with the same Master Panel.

Well, now we have the KB initialized to start working on each object and implement each
layout portion. See you in the next class!

