
Different attribute names for the same concept

Subtype group

▪ GeneXus determines relations for attributes with the same name.

Country Transaction

Attraction
Transaction

So far, we have seen that GeneXus defines relations between transactions
and between tables-, based on the names of attributes that it considers equal
to one another.

For instance, the CountryId attribute is in the Attraction transaction, where it
has a foreign key role, because it is present, under the same name, in the
Country transaction, where it is primary key.

In turn, the CountryName attribute is also in both transactions under the same
name: so, GeneXus understands that it is the same attribute. In this case, it is
not a primary attribute, and therefore GeneXus will decide to store it in the
COUNTRY table instead of in the ATTRACTION table.

We can then say that GeneXus always assumes that, if we use the same
attribute name, then we are representing the same concept.

However, there are cases where we might need to use different names for a
single concept and indicate to GeneXus that the two names have the same
meaning.

Requirement

▪ Record the flights offered to customers for arriving at a particular tourist attraction

customers for arriving at a particular tourist attraction.

Subtype group

Requirement

▪ For each flight, the departure airport, as well as the arrival airport

We must record, for each flight, the departure airport, as well as the arrival
airport.

Subtype group

Need for attributes with different names to represent the same concept

Flight

FlightId
AirportId
AirportName
AirportId
AirportName

Airport

AirportId
AirportName
CountryId
CountryName
CityId
CityName

Departure

Arrival

To represent this, first we will create a transaction under the name: Flight.

We define the FlightId attribute, which is automatically based on the ID
domain.

Now think what other information we should record.

As we said, each flight will have a departure airport and an arrival airport,
but we will have to record each airport on its own, in order to later
reference them from the flights.

So, leave the Flight transaction aside for a moment and create another
transaction called Airport.

We then define that each airport has one identifier that is AirportId, one
name that is AirportName, and is located in one country and in one city, so
we will add the attributes: CountryId, CountryName, CityId and CityName.
We save, and now we go back to see what our requirement was in the Flight
transaction.

To each flight we must add its departure airport and its arrival airport.

Subtype group

Duplicated name

So, we go back to the Flight transaction and add the AirportId and
AirportName attributes... but when we try to add AirportId again, GeneXus
tells us an error! Which is: adding an attribute with a
duplicated name!

And the same will happen with the AirportName attribute that we were
going to add to represent the name of the arrival airport.

So, what can we do to enter two airports in one transaction? Obviously, we
will have to use names of different attributes to store the origin and
destination information that we want to record.

Subtype group

Different attribute names
There is no relation

between transactions!

Partida

Llegada

then delete the attributes we originally entered and define attributes
with new names.

We will call the departure airport identifier with the name
FlightDepartureAirportId, and the name of the departure airport will be
FlightDepartureAirportName.

Well, now we have defined new attribute names, but to GeneXus these
attribute names are not related to AirportId or AirportName.

As we said before, if we use different names in the Flight and Airport
transactions to identify the airport concept, then GeneXus will not define
any relation between the two transactions.

Subtype group

Diagram

To verify this, we will create a transaction diagram.

And we will drag the Airport and Flight transactions to see that, in fact, GeneXus
does not find any relation between them because no foreign key was identified
in Flight to allow the relation with Airport.

If a relation had been found, an arrow would appear between both transactions.

Subtype group

Description attribute

Another way to consider this is to focus on the way in which GeneXus shows
the airport identifier attribute in the Flight transaction.

We can see that indicated with this symbol, which in the Airport transaction
is also in AirportName.

This symbol is indicating that the attribute is the one that best describes the
airport, in this case, or the flight, in the other case. When we create a

structure, GeneXus chooses, based on the data types,
which attribute best describes the transaction, but the user can change it, or
decide that there should be no attribute of this class.

Description attribute

This is used, for example, in the Work With pattern, to
allow filtering and ordering by it, amongst other options.

remember the pattern we applied to Attraction.

In the Flight transaction, we do not want the departure airport to be the
attribute that best describes the flight, so we remove it.

We can see that it is indicated with the square symbol, meaning that it is a
secondary attribute and is not considered as foreign key.

Foreign key

Secondary
attribute

compare this to the country identifier definition in the Attraction transaction.

In Attraction, the CountryId has an arrow pointing upwards, indicating that it is a
foreign key attribute but that is not the case of the FlightDepartureAirportId
attribute in the Flight transaction.

So, how can we get GeneXus to relate different names to a single concept?

We need FlightDepartureAirportId, even with a name different from AirportId, to
be considered as such, that is: as an airport identifier!

And the same goes for the airport name!

But, how can we make this happen?

The answer is: by defining sub-types.

When an attribute has a name different from another attribute already defined
and they both represent the same concept, we can GeneXus that the
new attribute is a sub-type of the other attribute.

From that moment on, to GeneXus, they will be exactly the same thing. So,
GeneXus will consider the attribute FlightDepartureAirportId just as if it was an
AirportId, that it: it will identify is as foreign key in the Flight transaction.

And we will do the same with FlightDepartureAirportName: we will indicate that
it is a sub-type of AirportName.

• Through subtypes, it is possible to make two attributes with different names correspond to the same
concept.

FlightDepartureAirportId is an

FlightDepartureAirportName is an

AirportId

AirportName

S

O

L

U

T

I

O

N

Now, go to the Flight transaction, where we will see that the
FlightDepartureAirportId attribute has the symbol of the arrow pointing
upwards, indicating that it will be considered as foreign key, and also the
letter S symbol, meaning that it is an attribute defined as sub-type.

now do the same to define the attributes that will enable us to
record the arrival airport.

To do that we will define attributes FlightArrivalAirportId and
FlightArrivalAirportName.

Then we save.

We now create a new object of the type with the name:
FlightArrivalAirport.

We type the dot . and GeneXus suggests the attributes starting by
FlightArrivalAirport so we select FlightArrivalAirportId.

We press tab and declare that it will be a sub-type of AirportId.

Now we add FlightArrivalAirportName, and define that its super-type is
AirportName.

Then we save.

DEMO

Subtype group

[DEMO: https://youtu.be/swgogPuGnOM]

Now, see this in action.

The first thing we must do to define sub-types is create a group of sub-types.

So, we create a new object of the type Subtype group, and name it
FlightDepartureAirport.

In the first line here we type the dot . and GeneXus suggests the attributes
that start by FlightDepartureAirport which we had already defined in the Flight
transaction.

We then select FlightDepartureAirportId press Tab, and for
FlightDepartureAirportId to be a sub-type of AirportId we select the attribute
AirportId as super-type.

We can say that the supertype is the original attribute, and the subtype is the
attribute that conceptually matches that original attribute, but has another
name.

Now we add FlightDepartureAirportName, and define that its super-type is
AirportName.

Then we save.

This attribute becomes the identifier of this subtype group, so we call it , and all
the attributes we add in this group, such as FlightDepartureAirportName, will depend on
it, like they do in the transaction.

Subtype group

Diagram: GeneXus has found a relation

The data will be checked for referential integrity at runtime!

analyze again the transaction diagram we had previously created.

We can see that now, GeneXus does draw an arrow between the
transactions: it considers the subtype identifier attributes of airport in Flight,
exactly as if we had referenced AirportId.

We can see that GeneXus has found the relation between Flight and Airport.

Note that even though in GeneXus only one arrow in the diagram,
technically there should be two.

see how all this functions. To do so, we press F5

The database must be reorganized, as the Flight and Airport tables need to be
created. We agree, so we press Reorganize.

We will start by defining airports, so we will execute the Airport transaction:

We enter the airport and indicate the corresponding country: Brazil
and city: Sao Paulo.

Now we will enter the de airport so, we select: France, and the
city is: Paris. Now we confirm.

Now we will go on to record a flight.

We now execute the Flight transaction and as departure airport we will select
while our arrival airport will be de .

We can see that the labels in the attributes are not showing us that this one is the
departure airport and this one the arrival one. If we go to the form
in GeneXus, and position ourselves on the field of the first airport.

We can see that the text shown in the label, that is to say, its Caption, is taken
from the ContextualTitle property. If we look for it, here is where
appear.

We add Departure .

We do the same with the name, and add to the arrival airport.

We can look at the form, and press F5 once again.

Now we will enter another flight.

If we try to type in airport 15 we get a notice that the airport does not exist.

Data consistency is being controlled, and we are offered the selection list... we can see
that we have the same controls and help as if the attributes were the foreign keys with
their original names, like we saw in this video, but in this case they are their sub-type
attributes.

And that was exactly the idea: to define sub-types in order to determine that different
attribute names correspond to the same concept!

This is why this attribute and this attribute are interpreted as foreign keys, and these
attributes will be inferred based on them.

But, how does GeneXus know that in this one it should infer the name of this airport, and
not of this one?

not because of the order in which the attributes are shown or because of
the names we gave them. GeneXus knows because this attribute has been
defined in the same group as this one. And this attribute was defined in a
different group, with this one.

So, we have seen that using sub-types enabled us to represent a
situation that occurs in reality, such as in this case, the flight with two
airports with different roles: one for departing and the other for arriving.

Something we should note here is that, although we defined attributes
with descriptive names that respectively refer to the departure and
arrival roles, it was also highly important to group, in the same group of
sub-types, the attributes that correspond to one another.

Note that we have not included all the sub-types in a single group, or the
two primary sub-type attributes in one group and the two secondary
attributes in another group. We have grouped together the attributes
that define the departure airport, and in another group we included the
attributes that define the arrival airport.

Subtype groups

And this is so, because GeneXus understands with this group:

that when a value is entered for airport identifier FlightDepartureAirportId, then
the name of the airport corresponding to this identifier must be loaded in this
FlightDepartureAirportName attribute, and not in the other airport name we
have in the transaction.

Likewise, GeneXus understands that when a value is typed for the airport
identifier: FlightArrivalAirportId, the name of the corresponding airport must be
loaded in the FlightArrivalAirportName attribute.

Subtype group

▪ RI control
▪ Selection list
▪ Grouped inferences

Subtype groups

Now suppose that in the Flight transaction, for each airport we want to
see, besides its name, its country and city as well.

This may be solved by simply defining more sub-type attributes, in each
group necessary, with the adequate naming and with indication of their
super-types. This will enable GeneXus to understand that, for the
primary sub-type, it will have to infer all the remaining related information.

do it.

In this group of sub-types we will define the following attributes:

FlightDepartureCountryId as sub-type of CountryId,
FlightDepartureCountryName as sub-type of CountryName,
FlightDepartureCityId as sub-type of CityId, and FlightDepartureCityName as
sub-type of CityName. We now save.

And we will also add these new attributes to the structure of the Flight
transaction. We save again.

And go on to do the same for the other group of sub-types

And we define:

FlightArrivalCountryId as sub-type of CountryId, FlightArrivalCountryName as
sub-type of CountryName, FlightArrivalCityId as sub-type of CityId, and

Subtype group

And what if for each airport we want to view its country and city?

FlightArrivalCityName as sub-type of CityName. We save.

After saving, we also add these to the structure of the Flight transaction.

Like we did before, we change each new contextual title, so that the label on
the screen indicates the role.

Then we press F5 again to execute the application.

Subtype group

Flight transaction

Now we open the Flight transaction, and when we check our first flight we
can see, for each airport, its corresponding country and city.

We have seen how to solve a double reference to the same concept with
different roles, because the two airports must be obtained from the same
table where each of them had a different role.

Subtype group

Other possible solutions

Defining only one subtype group:
FlightDepartureAirport

Defining only one subtype group:
FlightArrivalAirport

To end, it is important to know that also these could have been equally valid
solutions.

In the first proposal, a single group of sub-types has been defined, the one
corresponding to the departure airport, and the super-type attributes were left
for the entry of the destination.

And this is totally valid.

In this other proposal a single group of sub-types has also been defined, but
in this case for the group corresponding to the arrival airport.

In sum, sub-types enable us to indicate to GeneXus how to associate different
attribute names to a single concept. And, as we saw, validations, as well as all
the behavior of sub-types will be identical as if we had used the super-type
attributes.

There are a lot of other cases in which necessary to change an
name in order to avoid a conflict or ambiguity. In this video we saw the case of
multiple references from one table to the other, but these references
have to be direct.

Subtype group

Summary and Remarks

Subtypes have allowed us to represent a reality in which a flight has two airports with different roles.

Subtype groups allow us to set both roles apart (We do not define a single group with all the subtypes).

The right way to do this is:

• To define a group of subtypes for each set of attributes matching one another.

•
primary key), or a set of attributes that comprise a primary key.

• In each group of subtypes, define all the subtype attributes that need to be known and which belong to

Subtype group

More use cases

• Multiple references

• Recursive subtypes

• Specialization

Direct Indirect

From this table we have two different paths to get to this table. So we would
need subtypes to differentiate them.

We also have the case when an entity must reference itself.

For example, an employee transaction, in whose information we have to
register the boss, who is also an employee.

Or in the case where we have an entity which registers general information,
for example, of people (such as the name, telephone number, address, etc.)
and then have entities which are specializations of that other entity, for
example clients and passengers, who in particular are also people.

To finish, we will update the changes in GeneXus server. We add the
comments

And press Commit.

training.genexus.com
wiki.genexus.com

