
Defining Attributes as Formulas

Formulas

attribute1 + attribute2

average(attribute7)

attribute3 attribute4

count(attribute6)

max min(...)

sum(attribute5)

Many times we need the application to solve a calculation involving values
from certain attributes, constants, and/or functions.

For these cases, GeneXus provides Formulas.

Two types of Formulas:

Global Formulas

Local (or inline) Formulas

Atribute = fx

Knowledge Base

Formulas can be defined in two ways:

GLOBALLY: the calculation will be available throughout the Knowledge
Base.

Two types of Formulas:

Global Formulas

Local (or inline) Formulas

&Variable = fx

Knowledge Base

LOCALLY or INLINE: in this case, the calculation will be available only in
the object in which it has been defined.

Two types of Formulas:

Global formulas

Inline (or local) formulas

Knowledge Base

Global formulas

Let's start by explaining what a global formula is and how it is defined.

A global formula is a calculation defined in relation to an attribute.

If a calculation is defined in this column for an attribute, GeneXus will
understand that this attribute is virtual; that is to say, it will not have to be
physically created as a field in the associated table, because the attribute
value will be obtained by making the calculation we've indicated.

Adding a global formula

Let's see this with an example.

First, we will define a new attribute in the Flight transaction, in order to
store the price of each flight.
So, we add the FlightPrice attribute.
And create the Price domain.

We save.

Now we will add another new attribute in the same transaction to store the
discount applied to each flight. We call it: FlightDiscountPercentage
data type will be a domain also called Percentage, numeric of 3 digits.

Adding a global formula

Lastly, we will add another attribute called FlightFinalPrice, based on the
Price domain; this time, the attribute will be defined as a global formula.

calculation necessary, so that it is always run and this attribute provides

discount percentage stored in FlightDiscountPercentage from FlightPrice.
So, in this formula column we will type the corresponding calculation.

Note that in this window we only have to type the calculation, not the
assignment.

Impact Analysis

Now we press F5, which automatically saves all pending actions... and see
what happens.

In the Flight physical table, only 2 fields are created, even though we have
defined three new attributes in the transaction structure.

Due to the fact that the formula column contains a definition, this attribute
is not added in the physical table.

Because the attribute is defined in the Knowledge Base with an associated
formula, GeneXus can calculate its value. Also, in every object where this
attribute is included, the calculation will be made and the result will be
shown.

We reorganize... and see the application at runtime.

We run the Flight transaction, query flight number 1, and in this form we see the
three new attributes created:

the flight price enabled for us to enter it,
the discount percentage, also enabled for us to enter it,
and the final price, disabled because it is the attribute defined as a formula, and
its value is not entered; instead, it will be calculated and displayed.

Every attribute defined as a global formula will be read-only, and it will not be
possible to enter a value for it. This happens because the attribute obtains its
value from the associated calculation, which is run every time the attribute is
used.

For this reason, there isn't a field in the physical table to store this attribute value.
For this reason, there's no need for it to be editable.

We will enter a price for this flight, and a discount percentage: 10%.

After leaving the field, we see that the formula is immediately run, and the final
price of the flight is displayed with the discount applied.

10

Running the application with a global formula

FlightId 1

Using extended table attributes in a global formula

Create the Airline transaction

Add Airline attributes to Flight

+ determine the flight price
based on the airline
discount:

Let's return to GeneXus.
In this way, we have defined a global formula attribute.

Only attributes can be defined as global formulas in the way we've seen,
using the Formula column in the transaction.

Something important to remember is that, even though in the example we
have only used attributes from the transaction's own associated table -that
is to say, its base table-, attributes from the extended table can also be
used.

Let's see it.
We will create a new transaction called Airline to record the airlines.

We type:
- AirlineId
- AirlineName
- AirlineDiscountPercentage, to record the discount made by the airline for
all its flights.

We save. Now we open the Flight transaction to assign an airline to every
flight.

So, we add the AirlineId attribute, which here will be a foreign key... and
change the value of its Nullable property to Yes... In this way, we can avoid
indicating the flight's airline at this stage, because we still don't have any
airlines recorded.

Later on we can change again the value of this Nullable property to No, so
that it is mandatory to indicate the airline when entering or changing the
details of a flight.
In addition, we add the AirlineName and AirlineDiscountPercentage
attributes to also view this data in the form.

Now we will change the definition of this formula to have it calculate the
final price of the flight by applying it the generic discount of the airline,
instead of applying the discount of the flight itself.

Impact Analysis

We press F5...

As we can see, the Airline physical table will be created with the three
attributes defined, and in the Flight table the AirlineId foreign key will be
created.

So, we reorganize and run...

We run the Airline transaction and enter an airline, called TAM, with a
30% discount.

Now we will assign this airline to a flight.

So, we open the Flight transaction, flight number 1, and associate it with
airline number 1...

The new final price of the flight, which is a global formula attribute, is
calculated.

14

Testing the formula at runtime

Now it involves the discount percentage of the airline, which is an
attribute of the extended table of the Flight base table.

Adding conditions to the formula

expresión1 if condición1 ;
expresión2 if condición2 ;

expresiónn if condiciónn ;

fxAttribute =

We haven't mentioned yet that formulas can evaluate conditions, and the
result can be calculated in different ways depending on whether these
conditions are true or false.

Adding conditions to the formula

The result will be calculated in one way or another, depending on which condition is true

Let's see this.
To do so, we click on this button to edit the formula.

And we define that the highest discount percentage must be taken into
account to calculate the final price of the flight, in order to make the best
discount possible.

With this definition, if the airline has a higher discount for all its flights than
the discount percentage of the flight itself, the airline discount will be
considered to make the calculation.

We also add a default condition

expresión1 if condición1 ;
expresión2 if condición2 ;

expresiónn if condiciónn ;

fxAttribute =

Otherwise:

the discount percentage of the flight itself is used to make the calculation.

Testing the new definition of the formula

Note that formulas are written as expressions, so they end with a
semicolon. To calculate the formula, GeneXus keeps the first expression
that meets the condition. If no condition is met, and an otherwise clause
has been added, it uses this one.

We move the Final Price attribute to the end of the list, so that the
information is more clearly organized.

We press F5, and run the Flight transaction. In the first flight we set its
discount percentage to be higher than the overall discount percentage of
the airline; for example, 50%.

We exit this field and go to the airline field, so that it has everything
necessary to calculate the formula.

The final price of the flight was calculated using the highest discount.

Horizontal formulas

Let's return to GeneXus.

As we've seen, formulas can contain several lines followed by IF, and may
contain a last line with OTHERWISE in case none of the above conditions
are met.

In turn, even though in this example each result is obtained through a
calculation, functions applied to attributes or expressions can also be
used, such as Round, to obtain a rounded result.

Also, Month can be used to obtain the month of a date, etc... even a user-
defined procedure can be called to return a value.

If we right-click on the formula editing dialog and choose the Function
option... a new dialog will be displayed showing all the functions we could
insert.

GeneXus Wiki to search for information about this: at

are displayed with information about what we are looking for.

functions that we can use in transactions, and if we click on any of them,
we will get their complete information: use, syntax, types of data returned,
examples, etc.

the functions corresponding to a certain object in which we are
positioned, and gives an example that uses the Month() function to obtain
the list of clients who have a birthday in the current month.

method with the same meaning and behavior. We have already used the
IsEmpty method to control whether a field is empty, but there are many
others that we invite you to explore.

Aggregate formulas, used in:

Global Formulas

Local (or inline) Formulas

Attribute = fx

&Variable = fx

Knowledge
Base

This type of formulas, which perform a calculation that is obtained from
data of the record in which you are positioned (only one) and eventually
from the associated records (by extended table), are usually called
horizontal formulas.

Now we will see another type of formulas called Aggregate formulas.

We will explain them by defining examples of global formulas -that is to
say, the corresponding calculations will be defined in relation to
attributes, and therefore they will not be created as physical fields. As a
result, our examples can also be assigned in another context, such as a
variable, for example.
They may also be assigned locally in a certain section of an object (we will
see this in another video).

Aggregate formulas: Count, Sum, Average, etc.

Example: Create a second level in the Flight transaction

We'll define this domain with enumerated
values

Now we will create a second level in the Flight transaction... and call it:
Seat

As described by this level name, we will use it to record the seats available
in the flight; for each seat, we will indicate if it is next to a window, an
aisle, or in the middle. Next, we will need to know the total number of
seats available in the flight.

We type a period and complete the attribute name: FlightSeatId
Now we create another attribute called FlightSeat
character of 1.

Aggregate formulas: Count, Sum, Average, etc..

Define a domain with enumerated values:

Now we edit the domains, to change a property of the Location domain
that we've just created:

We locate the Enum Values property, and define the three values that this
domain can take:

-
-
-

We click on OK.

Aggregate formulas: Count, Sum, Average, etc.

Look at the form of the Flight transaction. A grid has been added to enter
the flight's seats, and for every seat we can indicate its position through a
combo control.

are the possible values defined for the domain of the FlightSeatLocation
attribute.

Aggregate formulas: Count, Sum, Average, etc.

Change the Seat level key to better represent the seat. We want to identify it with a number + a letter from A to F.

Enum Domain

Before pressing F5, let's look at the definition of the second level.

If the key is made up of FlightId plus FlightSeatId, for each flight, the seat
numbers cannot be repeated. However, we need the seat number to be
repeated, because it is identified by this number and a letter. In this way,
we will have seats 1A, 1B, 1C, 2A, 2B, and so on.

So, we add a new FlightSeatChar attribute, and its domain will be
SeatChar, a character of 1.

We will make this attribute part of the key to record the same seat
numbers with different letters.

We will limit the possible letters from A to F, and to do so we will edit the
SeatChar domain that we've just created...

We locate its Enum Values property and define the possible values:

In this case, the descriptions' values match the values stored. We click on
OK.

Aggregate formulas: Count, Sum, Average, etc.

Add a new formula to count the number of seats:

Now, to find out the maximum number of passengers allowed on a flight,
according to the number of seats, we will define a new attribute in the first
level. In its Formula column we will indicate the calculation consisting in
counting the number of seats offered in the flight...

So, we create the FlightCapacity attribute, and its data type will be
numeric of 4.

In its Formula column we type: Count... and between brackets we add an
attribute that lets GeneXus know that we want to count the seats. To this
end, we choose the FlightSeatLocation attribute that belongs to the
transaction level containing the seats.

The Count formula will count data in memory or records of a table
depending on the case. If we are inserting or updating a flight, the Count
formula will count in memory the seats that the user has been recording.

If the end user is not interacting with the transaction form, the Count
formula will count the records in the FlightSeat table. If we are positioned
on a given flight, GeneXus will only count the seats corresponding to that
flight. That is, GeneXus automatically detects the relationship between the
table where the formula attribute was defined and the table navigated by
the formula, so to perform the calculation it will only take into account the
related records. If no relationship is found, GeneXus will count all the
records of the table navigated.

The attribute that is referred to inside the brackets of the formula gives
GeneXus information about the level in memory that must be run through,
or of the table that must be navigated to perform the calculation.

Aggregate formulas: Count, Sum, Average, etc.

We'll define this domain with
enumerated values

Let's try this at runtime by pressing F5...

As we can see, the FLIGHTSEAT physical table will be created, and it will
be associated with the 2nd level of the Flight transaction; also, it will
contain the attributes and they key that we've defined... note that the
structure of the FLIGHT transaction will not be modified because the
FlightCapacity attribute will not be physically created, as we expected.

We agree, so we click on reorganize...

DEMO

Formulas

We run the Flight transaction... query flight number 1 and enter some seats:

- 1A - window
- 1B middle
- 1C aisle
- 1D window
- 1E middle
- 1F aisle

As we enter the seats, note that the total number of seats is updated every time we add a new seat
to the flight.

That is, it is triggered interactively in the Browser, as we add lines, and when we
leave the attribute mentioned in the Count. Go back a little bit in the video, and
look at what happened with the formula attribute.

Lastly, we add:

- 2A window and stop here

Let's return to GeneXus.

Aggregate formulas: Count, Sum, Average, etc.

Sum(Atr) Average(Atr)

Max() Min() Find()

In addition, there are other Aggregate formulas that make operations by
taking several records into account.

For example: Sum, to add the values of the specified attribute; Average, to
find the average value of the specified attribute, and others such as Max,
to find the maximum value of an attribute in the table to be navigated, and
return the value of some other attribute for the corresponding record;
Min, to do the same but with a minimum value, or Find, to find the value of
an attribute according to some condition; for example, to find the

frequently used later.

Aggregate formulas: Count, Sum, Average, etc.

Conditions can be added to count "certain" lines:

If we want to count not only the total seats in the flight we're positioned in,
but also those that meet another condition, such as, for example, the
number of seats next to the window, we can add this condition to the
formula. In this way... since the FlightSeatLocation attribute belongs to the
Location domain, and it has 3 enumerated values defined, the syntax to
ask for the value taken by the attribute is as follows:

domain name, period, and the name associated with the value we want to
filter by, which in this case is Window.

We click on OK.

Aggregate formulas: Count, Sum, Average, etc.

Filtering condition

We press F5.

We run the Flight transaction, record number 1; the flight's capacity is now
3, and it corresponds to the number of seats located next to a window,
which matches the seats we entered in the seat grid.

In sum, we have seen that in addition to the implicit condition (when there
are related records), it is also possible to count, sum, search for, maximize
or average; that is to say, add those records that comply with a certain

interested in.

Lastly, we must remember that just like every other global formula,

formula is only calculated when this condition is met.

Summing up

Horizontal:

• To make a calculation, they access a record and, occasionally, those related through an extended table.

FlightFinalPrice

Attribute =

expresión1 if condición1;
expresión2 if condición2;
…
expresiónn if condiciónn;
expresióno otherwise;

In sum: we've seen two types of formulas:

Horizontal formulas - they access a record to make a calculation. Also,
these records may be related through the extended table.

That was the case of FlightFinalPrice.

These attributes belonged to the FLIGHT table, and the others to the
Airline table.

As we saw in the example, we could set a formula attribute to be
calculated in different ways depending on the value of a condition.

Summing up

FlightId FlightDepartureAirportId

1 1

2 3

3 1

Aggregate:

• To make a calculation, they need to navigate many records of the same table.

• Example: FlightCapacity

FlightId FlightSeatId FlightSeatLocation

1 1 A Window

1 1 B Aisle

1 2 A Window

1 2 B Aisle

1 3 C Middle

2 1 A Window

2 1 B Middle

3

Aggregate formulas - to make their calculation, they need to navigate
many records in the same table.

That was the case of FlightCapacity.

From the FLIGHT table associated with the formula attribute, it made a
calculation over the FLIGHTSEAT table that contains the
FlightSeatLocation attribute.

In this case, since the formula attribute is associated with a table, Flight,
which has a 1-to-many relationship with the table over which the Count
operation will be made, only the related records will be counted. If the
relationship didn't exist, they would all be counted. In addition, because
we indicate conditions for the records to be counted, the related records
will only be counted as long as they meet that condition.

Summing up

Attribute = Count(Attribute, condition, DefaultValue) if condición;

Sum(Expression, condition, DefaultValue) if condición;

Find(Expression, condition, DefaultValue) if condición;

The filtering condition is the second parameter in the formula, and as a
third parameter we can indicate a default value; that is to say, the value
that will be returned by the formula if no record is found to count, sum,
etc.

Just like horizontal formulas, aggregate formulas can be stated with
conditions.

Summing up

Attribute = 2 + Count(Attribute, condition, DefaultValue) *

Sum(Expression, condition, DefaultValue) if condición;

Atr1 + Atr2 * Atr3 otherwise;

Horizontal formulas can be combined with aggregate formulas, providing
a high degree of expressiveness in calculations, but we won't talk about it
in this course.

An aggregate formula can not only be specified if the table being
navigated corresponds to a level of the same transaction. In the example
we saw, the formula attribute, FlightCapacity, is on the first level of the
Flight transaction, and the table being navigated will be the one
corresponding to the second level.
But let's look at what would happen if, for example, we wanted to define a
formula at the airline level, AirlineFlightMostExpensiveId, that would return
the flight identifier of the most expensive airline flight.
The formula we need in that case is Max. If we look it up in the Wiki, we
see that it has 4 parameters, of which only the first one (that indicates the
value that will be maximized) is mandatory. In our case, it would be
defined in this way:

max(FlightFinalPrice, , , FlightId)

Where we are, of all the Flight records corresponding to the airline,
keeping the one or the ones with the highest FlightFinalPrice attribute

of the maximum price records, it returns the value of the FlightId attribute.
Since we didn't specify a second parameter, it will not apply any other
filter condition on the records to be considered for maximization, and
since we didn't include a third parameter, if it doesn't find any associated

record, it will return the empty value. But this will only happen if the airline
does not have any associated flights.
If we see it running, when we open the Airline transaction the formula is
triggered, which will navigate the flight table, which is not in memory at
this time.

• Fórmulas

Where we are, of all the Flight records corresponding to the airline,
keeping the one(s) with the highest FlightFinalPrice attribute value (it

maximum price records, it returns the value of the FlightId attribute.

Since we didn't specify a second parameter, it will not apply any other
filter condition on the records to be considered for maximization, and
since we didn't include a third parameter, if it doesn't find any associated
record, it will return the empty value. But this will only happen if the airline
does not have any associated flights.

If we see it running, when we open the Airline transaction the formula is
triggered; it will navigate the flight table which is not in memory at this
time.

Global Formulas

Local (o inline) Formulas

Attribute = fx

Knowledge Base

Lastly, let's remove the filtering condition from the FlightCapacity
attribute...

And send the new definitions to GeneXus Server.

The formulas discussed in this video are those specified at the attribute

knowledge base.

Later on we will study the others, which are equal but not assigned to an
attribute: they are the so-

Remember that formula attributes are virtual, i.e. they are not physically
created as fields in the associated table. However, it is possible to modify
the default behavior of these attributes and store their values, defining

invite you to read about how to do it in the GeneXus Wiki.

Remember that aggregation formulas don't always need to search for
information in a table, but they also (as in the case of Flight that we
studied) operate in memory.

training.genexus.com
wiki.genexus.com

